‘壹’ 相似图片检测:感知哈希算法之dHash的python实现
某些情况下,我们需要检测图片之间的相似性,进行我们需要的处理:删除同一张图片、标记盗版等。
如何判断是同一张图片呢?最简单的方法是使用加密哈希(例如MD5, SHA-1)判断。但是局限性非常大。例如一个txt文档,其MD5值是根据这个txt的二进制数据计算的,如果是这个txt文档的完全复制版,那他们的MD5值是完全相同的。但是,一旦改变副本的内容,哪怕只是副本的缩进格式,其MD5也会天差地别。因此加密哈希只能用于判断两个完全一致、未经修改的文件,如果是一张经过调色或者缩放的图片,根本无法判断其与另一张图片是否为同一张图片。
那么如何判断一张被PS过的图片是否与另一张图片本质上相同呢?比较简单、易用的解决方案是采用感知哈希算法(Perceptual Hash Algorithm)。
感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。
如果我们要计算上图的dHash值,第一步是把它 缩放到足够小 。为什么需要缩放呢?因为原图的分辨率一般都非常高。一张 200*200 的图片,就有整整4万个像素点,每一个像素点都保存着一个RGB值,4万个RGB,是相当庞大的信息量,非常多的细节需要处理。因此,我们需要把图片缩放到非常小,隐藏它的细节部分,只见森林,不见树木。建议缩放为9*8,虽然可以缩放为任意大小,但是这个值是相对合理的。而且宽度为9,有利于我们转换为hash值,往下面看,你就明白了。
(感谢评论区 隔壁万能的小黑 同学,建议在 image.resize 中加上Image.ANTIALIAS参数,加上此参数将会对所有可以影响输出像素的输入像素进行高质量的重采样滤波)
dHash全名为差异值hash,通过计算相邻像素之间的颜色强度差异得出。我们缩放后的图片,细节已经被隐藏,信息量已经变少。但是还不够,因为它是彩色的,由RGB值组成。白色表示为(255,255,255),黑色表示为(0,0,0),值越大颜色越亮,越小则越暗。每种颜色都由3个数值组成,也就是红、绿、蓝的值 。如果直接使用RGB值对比颜色强度差异,相当复杂,因此我们转化为灰度值——只由一个0到255的整数表示灰度。这样的话就将三维的比较简化为了一维比较。
差异值是通过计算每行相邻像素的强度对比得出的。我们的图片为9*8的分辨率,那么就有8行,每行9个像素。差异值是每行分别计算的,也就是第二行的第一个像素不会与第一行的任何像素比较。每一行有9个像素,那么就会产生8个差异值,这也是为何我们选择9作为宽度,因为8bit刚好可以组成一个byte,方便转换为16进制值。
如果前一个像素的颜色强度大于第二个像素,那么差异值就设置为True(也就是1),如果不大于第二个像素,就设置为False(也就是0)。
我们将差异值数组中每一个值看做一个bit,每8个bit组成为一个16进制值,将16进制值连接起来转换为字符串,就得出了最后的dHash值。
汉明距离这个概念不止运用于图片对比领域,也被使用于众多领域,具体的介绍可以参见Wikipedia。
汉明距离表示将A修改成为B,需要多少个步骤。比如字符串“abc”与“ab3”,汉明距离为1,因为只需要修改“c”为“3”即可。
dHash中的汉明距离是通过计算差异值的修改位数。我们的差异值是用0、1表示的,可以看做二进制。二进制0110与1111的汉明距离为2。
我们将两张图片的dHash值转换为二进制difference,并取异或。计算异或结果的“1”的位数,也就是不相同的位数,这就是汉明距离。
如果传入的参数不是两张图的dHash值,而是直接比较两张图片,那么不需要生成dHash值,直接用Step3中的difference数组,统计不相同的位数,就是汉明距离。
一般来说,汉明距离小于5,基本就是同一张图片。大家可以根据自己的实际情况,判断汉明距离临界值为多少。
https://github.com/hjaurum/DHash
‘贰’ 哈希表、哈希算法、一致性哈希表
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。它通过把关键码映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数(哈希函数),存放记录的数组叫做散列表。
优点:
哈希表可以提供快速的操作。
缺点:
哈希表通常是基于数组的,数组创建后难于扩展。
也没有一种简便的方法可以以任何一种顺序〔例如从小到大)遍历表中的数据项 。
综上, 如果不需要有序遍历数据,井且可以提前预测数据量的大小。那么哈希表在速度和易用性方面是无与伦比的。
1. 使用哈希函数将被查找的键转换为数组的索引。
2. 处理哈希碰撞冲突。
若关键字为 k ,则其值存放在 f(k) 的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系 f 为散列函数,按这个思想建立的表为散列表。
若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为 均匀散列函数 (Uniform Hash function),这就是使关键字经过散列函数得到一个"随机的地址",从而减少碰撞。
散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位。
一个好的散列函数一般应该考虑下列因素 :
1.计算简单,以便提高转换速度。
2.关键词对应的地址空间分布均匀,以尽量减少冲突。
1. 直接寻址法
取关键字或者关键字的某个线性函数值作为哈希地址,即H(Key)=Key或者H(Key)=a*Key+b(a,b为整数),这种散列函数也叫做自身函数.如果H(Key)的哈希地址上已经有值了,那么就往下一个位置找,直到找到H(Key)的位置没有值了就把元素放进去。
2. 数字分析法
数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。
3. 平方取中法
取关键字平方后的中间几位作为散列地址。这种方法的原理是通过取平方扩大差别,平方值的中间几位和这个数的每一位都相关,则对不同的关键字得到的哈希函数值不易产生冲突,由此产生的哈希地址也较为均匀。该方法适用于关键字中的每一位都有某些数字重复出现频度很高的现象。
4. 折叠法
折叠法是将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(注意:叠加和时去除进位)作为散列地址。
数位叠加可以有移位叠加和间界叠加两种方法。移位叠加是将分割后的每一部分的最低位对齐,然后相加;间界叠加是从一端向另一端沿分割界来回折叠,然后对齐相加。
该方法适用于关键字特别多的情况。
5. 随机数法
选择一个随机数,作为散列地址,通常用于关键字长度不同的场合。
6. 除留余数法
取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址.即H(Key)=Key MOD p,p<=m.不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选得不好,则很容易产生冲突。
对不同的关键字可能得到同一散列地址,即 k1≠k2 ,而 f(k1)=f(k2) ,这种现象称为碰撞(英语:Collision)。具有相同函数值的关键字对该散列函数来说称做同义词。
通过构造性能良好的散列函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。 创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。
下面以创建哈希表为例,说明解决冲突的方法。
1.开放寻址法
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:Hi=(H(key)+di)%m i=1,2,…,m-1,其中H(key)为哈希函数,m 为表长,di称为增量序列,i为碰撞次数。增量序列的取值方式不同,相应的再散列方式也不同。增量序列主要有以下几种:
(1) 线性探测再散列
di=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
(2)二次探测再散列
di=12,-12,22,-22,…,k2,-k2( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
(3)伪随机探测再散列
di=伪随机数序列。
线性探测再散列的 优点 是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。
其实除了上面的几种方法,开放寻址法还有很多变种,不过都是对di有不同的表示方法。(如双散列探测法:di=i*h2(k))
2.再哈希法
这种方法是同时构造多个不同的哈希函数:Hi=RHi(key),i=1,2,3,…,n。
当哈希地址H1=RH1(key)发生冲突时,再计算H2=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
3.链地址法(拉链法)
这种方法的基本思想是将所有哈希地址相同的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表(数组)中,因而查找、插入和删除主要在同义词链中进行。若选定的散列表长度为m,则可将散列表定义为一个由m个头指针组成的指针数组T[0..m-1]。凡是散列地址为i的结点,均插入到以T[i]为头指针的单链表中。T中各分量的初值均应为空指针。链地址法适用于经常进行插入和删除的情况。
拉链法的优点
与开放寻址法相比,拉链法有如下几个优点:
(1)拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
(2)由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
(3)开放寻址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中理论上可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;(散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度)
注:HashMap默认装填因子是0.75。
(4)在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。而对开放寻址法构造的散列表,删除结点不能简单地将被删结点的空间置为空,否则将截断在它之后填入散列表的同义词结点的查找路径。这是因为各种开放寻址法中,空地址单元都被理解没有查找到元素。 因此在用开放寻址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点。
拉链法的缺点
拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放寻址法较为节省空间,此时将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放寻址法中的冲突,从而提高平均查找速度。
4、建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表(在这个方法里面是把元素分开两个表来存储)。
散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。
查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。
影响产生冲突多少有以下三个因素:
1. 散列函数是否均匀;
2. 处理冲突的方法;
3. 散列表的装填因子。
散列表的装填因子
定义为:α= 填入表中的元素个数 / 散列表的长度
α是散列表装满程度的标志因子。由于表长是定值,α与"填入表中的元素个数"成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。
实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。
这个HASH算法不是大学里数据结构课里那个HASH表的算法。这里的HASH算法是密码学的基础,了解了hash基本定义,就不能不提到一些着名的hash算法,MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。
Hash算法在信息安全方面的应用主要体现在以下的3个方面:
⑴ 文件校验
我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗 数据篡改 的能力,它们一定程度上能检测出数据传输中的信道误码,但却不能防止对数据的恶意破坏。
MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性 校验和 (Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。
⑵ 数字签名
Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在 数字签名 协议中,单向散列函数扮演了一个重要的角色。对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。
⑶ 鉴权协议
如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。
一致性哈希表简称DHT,主要应用于分布式缓存中,可以用来解决分布式存储结构下动态增加和删除节点所带来的问题。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N(key是数据的key,N是机器节点数),如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。
判定哈希算法好坏的四个定义 :
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。 分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的, 因此好的哈希算法应能够尽量降低缓冲的负荷。
在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash取模算法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。接下来主要说明一下一致性哈希算法是如何设计的。
以SpyMemcached的ketama算法来说,思路是这样的:
把数据用hash函数,映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。
如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:
这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。
为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:
图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。
‘叁’ 什么是hash函数
哈希函数(Hash Function),也称为散列函数,给定一个输入 x ,它会算出相应的输出 H(x) 。哈希函数的主要特征是:
另外哈希函数一般还要求以下两种特点:
1、免碰撞 :即不会出现输入 x≠y ,但是H(x)=H(y) 的情况,其实这个特点在理论上并不成立,比如目前比特币使用的 SHA256 算法,会有 2^256 种输出,如果我们进行 2^256 + 1 次输入,那么必然会产生一次碰撞,事实上,通过 理论证明 ,通过 2^130 次输入就会有99%的可能性发生一次碰撞,不过即使如此,即便是人类制造的所有计算机自宇宙诞生开始一直运算到今天,发生一次碰撞的几率也是极其微小的。
2、隐匿性 :也就是说,对于一个给定的输出结果 H(x) ,想要逆推出输入 x ,在计算上是不可能的。如果想要得到 H(x) 的可能的原输入,不存在比穷举更好的方法。
hash 算法的原理是试图将一个空间的数据集映射到另外一个空间(通常比原空间要小),并利用质数将数据集能够均匀的映射。目前主流的 hash 算法有: md4 、 md5 、 sha系列 。
MD4是麻省理工学院教授 Ronald Rivest 于1990年设计出来的算法。其摘要长度为128位,一般用32位的十六进制来表示。
2004年8月清华大学教授王小云,指出在计算MD4时可能发生杂凑冲撞。不久之后,Dobbertin 等人发现了MD4在计算过程中第一步和第三步中的漏洞,并向大家演示了如何利用一部普通电脑在几分钟内找到MD4中的冲突,毫无疑问,MD4就此被淘汰掉了。
1991年,Rivest 开发出技术上更为趋近成熟的MD5算法,它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然 MD5 比 MD4 复杂度大一些,但却更为安全。这个算法很明显的由四个和 MD4 设计有少许不同的步骤组成。
MD5 拥有很好的抗修改性,即对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
MD5很好的用在了大文件的断点续传上:如果有一个 5MB 的文件 客户端把它分割成5片 1MB 的文件 在上传的时候上传两个 MD5 值,一个是当前上传的文件片的 MD5 还有一个就是拼接之后的 MD5 (如果现在上传的是第二片 这个MD5就应该是第一片加上第二片的MD5), 通过这样的方式能保证文件的完整性。
当如果文件传到一半断了,服务器可以通过验证文件 MD5 值就可以得知用户已经传到了第几片,并且知道之前上传的文件有没有发生变化,就可以判断出用户需要从第几片开始传递。
不过在2004年8月的国际密码学会议(Crypto’2004),王小云提出了一种快速找到 MD5 碰撞的方法(参见其 论文 ),降低了 MD5 的安全性,人们开始寻求更加可靠的加密算法。
SHA的全称是Secure Hash Algorithm(安全hash算法),SHA系列有五个算法,分别是 SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布,是美国的政府标准。后四者有时并称为 SHA-2。SHA-1在许多安全协定中广为使用,包括 TLS/SSL 等,是 MD5 的后继者。
最初该算法于1993年发布,称做安全散列标准 (Secure Hash Standard),最初这个版本被称为"SHA-0",它在发布之后很快就被NSA撤回,因为有很大的安全缺陷,之后在1995年发布了修订版本,也就是SHA-1。
SHA-0 和 SHA-1 会从一个最大 2^64 位元的讯息中产生一串 160 位元的摘要,然后以 MD4 及 MD5 算法类似的原理来加密。
2017年,谷歌发布了最新的研究成功,宣布攻破了SHA-1,并详细描述了成功的SHA1碰撞攻击方式,使用这种方式,可以在亚马逊的云计算平台上,耗时10天左右创建出SHA-1碰撞,并且成本可以控制在11万美元以内。
即使如此,对于单台机器来说攻击的成本依然很高,发生一次SHA-1碰撞需要超过 9,223,372,036,854,775,808 个SHA1计算,这需要使用你的机器进行6500年计算。
SHA2包括了SHA-224、SHA-256、SHA-384,和SHA-512,这几个函数都将讯息对应到更长的讯息摘要,以它们的摘要长度(以位元计算)加在原名后面来命名,也就是说SHA-256会产生256位长度摘要。
SHA-2相对来说是安全的,至今尚未出现对SHA-2有效的攻击!
由于目前大量的网站使用的SSL数字证数都是使用SHA-1签名的,而SHA-1又已经不安全,各大浏览器厂商均宣布了弃用SHA-1的时间表:
可以看出,在时间表之后,如果检测到网站的证书使用的还是SHA-1,就会弹出警告:
为了防止网站因出现上面的警告而显得不专业,我们需要尽快的申请使用跟安全放心的基于SHA-2签名的证书。
‘肆’ 哈希的算法是什么
哈希算法是一个广义的算法,也可以认为是一种思想,使用Hash算法可以提高存储空间的利用率,可以提高数据的查询效率,也可以做数字签名来保障数据传递的安全性。所以Hash算法被广泛地应用在互联网应用中。
哈希算法也被称为散列算法,Hash算法虽然被称为算法,但实际上它更像是一种思想。Hash算法没有一个固定的公式,只要符合散列思想的算法都可以被称为是Hash算法。
特点:
加密哈希跟普通哈希的区别就是安全性,一般原则是只要一种哈希算法出现过碰撞,就会不被推荐成为加密哈希了,只有安全度高的哈希算法才能用作加密哈希。
同时加密哈希其实也能当普通哈希来用,Git 版本控制工具就是用 SHA-1 这个加密哈希算法来做完整性校验的。一般来讲越安全的哈希算法,处理速度也就越慢,所以并不是所有的场合都适合用加密哈希来替代普通哈希。
‘伍’ 用图片识别搜索引擎(如百度识图、腾讯优图)识别个人照片,会不会泄露个人隐私也就是说图片会不会上传
会在一定范围内泄露个人隐私。图片也会上传。
原因:图片识别的基本原理是"感知哈希算法"(Perceptual hash algorithm),它需要先抓取你的图片信息,然后根据图片信息生成一个独一无二的字符串,然后再去匹配类似接近的字符串。在抓取和匹配的过程中,你的个人信息其实已经上传。
(5)躲避感知Hash算法扩展阅读
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,是应用深度学习算法的一种实践应用。
现阶段图像识别技术一般分为人脸识别与商品识别,人脸识别主要运用在安全检查、身份核验与移动支付中;商品识别主要运用在商品流通过程中,特别是无人货架、智能零售柜等无人零售领域
图像的传统识别流程分为四个步骤:图像采集→图像预处理→特征提取→图像识别。图像识别软件国外代表的有康耐视等,国内代表的有图智能、海深科技等。另外在地理学中指将遥感图像进行分类的技术。
‘陆’ python之哈希算法
哈希(Hash)算法:`hash(object)`
哈希算法将一个不定长的输入,通过散列函数变换成一个定长的输出,即散列值。是一种信息摘要算法。对象的hash值比原对象拥有更低的内存复杂度。
它不同于加密。哈希(hash)是将目标文本转换成具有相同长度的,不可逆的杂凑字符串,而加密则是将文本转换为具有相同长度的,可逆的密文。
哈希(hash)算法是不可逆的,只能由输入产生输出,不能由输出产生输入。而加密则是可逆的。即可以从输入产生输出,也可以反过来从输出推出输入。
对于hash算法,不同的数据应该生成不同的哈希值。如果两个不同的数据经过Hash函数计算得到的Hash值一样。就称为哈希碰撞(collision)。哈希碰撞无法被完全避免。只能降低发生概率。
好的hash函数会导致最少的hash碰撞。
*
可哈希性(hashable):
可哈希的数据类型为不可变的数据结构(如字符串srt,元组tuple,对象集objects等)。这种数据被称为可哈希性。
不可哈希性:
不可哈希的数据类型,为可变的数据结构(如字典dict,列表list和集合set等)。
如果对可变的对象进行哈希处理,则每次对象更新时,都需要更新哈希表。这样我们则需要将对象移至不同的数据集,这种操作会使花费过大。
因此设定不能对可变的对象进行hash处理。
**
**
Python3.x添加了hash算法的随机性,以提高安全性,因此对于每个新的python调用,同样的数据源生成的结果都将不同。
哈希方法有(MD5, SHA1, SHA256与SHA512等)。常用的有SH256与SHA512。MD5与SHA1不再常用。
- MDH5 (不常用)
- SHA1 (不常用)
- SHA256 (常用)
- SHA512 (常用)
一种局部敏感的hash算法,它产生的签名在一定程度上可以表征原内容的相似度。
> 可以被用来比较文本的相似度。
安装simhash:
Pip3 install simhash
感知哈希算法(perceptual Hash Algorithm)。用于检测图像和视频的差异。
安装Imagehash:
pip3 install Imagehash
比较下面两张图片的Imagehash值
可以看到两张图片的hash值非常相似。相似的图片可以生成相似的哈希值是Imagehash的特点。
‘柒’ 感知哈希算法
感知哈希算法是一类哈希算法的总称,其作用在于生成每张图像的“指纹”(fingerprint)字符串,比较不同图像的指纹信息来判断图像的相似性。结果越接近图像越相似。感知哈希算法包括均值哈希(aHash)、感知哈希(pHash)和dHash(差异值哈希)。
aHash速度较快,但精确度较低;pHash则反其道而行之,精确度较高但速度较慢;dHash兼顾二者,精确度较高且速度较快。
在得到64位hash值后,使用汉明距离量化两张图像的相似性。汉明距离越大,图像的相似度越小,汉明距离越小,图像的相似度越大。
a) 缩放图片:为了保留图像的结构,降低图像的信息量,需要去掉细节、大小和横纵比的差异,建议把图片统一缩放到8*8,共64个像素的图片;
b) 转化为灰度图:把缩放后的图片转化为256阶的灰度图;
c) 计算平均值: 计算进行灰度处理后图片的所有像素点的平均值;
d) 比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0;
e) 构造hash值:组合64个bit位生成hash值,顺序随意但前后保持一致性即可;
f) 对比指纹:计算两幅图片的指纹,计算汉明距离。
感知哈希算法可以获得更精确的结果,它采用的是DCT(离散余弦变换)来降低频率。
a) 缩小尺寸
为了简化了DCT的计算,pHash以小图片开始(建议图片大于8x8,32x32)。
b) 简化色彩
与aHash相同,需要将图片转化成灰度图像,进一步简化计算量(具体算法见aHash算法步骤)。
c) 计算DCT
DCT是把图片分解频率聚集和梯状形。这里以32x32的图片为例。
d) 缩小DCT
DCT的结果为32x32大小的矩阵,但只需保留左上角的8x8的矩阵,这部分呈现了图片中的最低频率。
e) 计算平均值
如同均值哈希一样,计算DCT的均值
f) 进一步减小DCT
根据8x8的DCT矩阵进行比较,大于等于DCT均值的设为”1”,小于DCT均值的设为“0”。图片的整体结构保持不变的情况下,hash结果值不变。
g) 构造hash值
组合64个bit位生成hash值,顺序随意但前后保持一致性即可。
h)对比指纹:计算两幅图片的指纹,计算汉明距离。
相比pHash,dHash的速度更快,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。
a) 缩小图片:收缩至9*8的大小,它有72的像素点;
b) 转化为灰度图:把缩放后的图片转化为256阶的灰度图。(具体算法见aHash算法步骤);
c) 计算差异值:计算相邻像素间的差异值,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值;
d) 比较差异值:如果前一个像素的颜色强度大于第二个像素,那么差异值就设置为“1”,如果不大于第二个像素,就设置“0”。
e) 构造hash值:组合64个bit位生成hash值,顺序随意但前后保持一致性即可。
f) 对比指纹:计算两幅图片的指纹,计算汉明距离。
‘捌’ 哈希算法是什么呢
哈希算法就是一种特殊的函数,不论输入多长的一串字符,只要通过这个函数都可以得到一个固定长度的输出值,这就好像身份证号码一样,永远都是十八位而且全国唯一。
哈希算法的输出值就叫做哈希值。哈希算法也被称为“散列”,是区块链的四大核心技术之一。是能计算出一个数字消息所对应的、长度固定的字符串。
哈希算法原理:
Hash算法的原理是把输入空间的值映射到Hash空间内,由于Hash值的空间远小于输入的空间,而且借助抽屉原理 ,可以得出一定会存在不同的输入被映射成相同输出的情况,如果一个Hash算法足够好,那么他就一定会有更小的发生冲突的概率,也就是说,一个好的Hash算法应该具有优秀的 抗碰撞能力。