1. 小学数学简便算法最全方法归类
小学数学简便算法最全方法归类:
1、借来借去法
用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
5、利用公式法
(1)加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2)减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4)除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
2. 小学数学有哪些简便算法,你知道吗
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
3. 小学数学简便运算技巧
只要正握一些简便的运算技巧和方法,数学算起来一点都不难。来看看我给你分享的小学数学简便算法方法吧。
小学数学简便算法方法
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借来借去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现: 57×101=?
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。
6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
裂 项 法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的`关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:
4. 小学数学速算法
小学数学速算法
小学数学速算法,计算教学常常被学生与“抽象、枯燥、无味”联系在一起,教学中如何让其易于理解、为学生所喜爱一直是很多教师思考的问题。下面看看小学数学速算法。
1、十几乘十几
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1 2+4=62×4=8 12×14=168
注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补(尾相加等于10)
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=32×3=63×7=21 23×27=621
注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4 4×4=16 7×4=28 37×44=1628
注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8 2+4=6 1×1=1 21×41=861
5、11乘任意数
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5 3+1=4 1+2=3 2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×467=?
解:13个位是3
3×4+6=18 3×6+7=25 3×7=21
13×467=6071
注:和满十要进一。
7.多位数乘以多位数
口诀:前一个因数逐一乘后一个因数的每一位,第二位乘10倍,第三位乘100倍……以此类推
例:33*132=?
33*1=33
33*3=99
33*2=66
99*10=990
33*100=3300
66+990+3300=4356
33*132=4356
注:和满十要进一。
1、加大减差法
口诀:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
例题:1376+98=1474 计算方法:1376+100-2。
2、求只是数字位置颠倒两个两位数的和
口诀:一个数的十位数加上它的个位数乘以11等于和。
例题:47+74=121 计算方法:(4+7)x 11=121。
3、一目三行加法
口诀:提前虚进一,中间弃9,末位弃10。
例题:472+872=1344。
1:会算法--笔算训练,
现今我国的教育体制是应试教育,检验学生的标准是考试成绩单,那么学生的主要任务就是应试,答题,答题要用笔写,笔算训练是教学的主线。与小学数学计算方法一致,不运用任何实物计算,无论横式,竖式,连加连减都可运用自如,用笔做计算是启动智慧快车的一把金钥匙。
2:明算理-算理拼玩,
会用笔写题,不但要使孩子会算法,还要让孩子明白算理。 使孩子在拼玩中理解计算的算理,突破数的计算。孩子是在理解的基础上完成的计算。
3:练速度--速度训练,
会用笔算题还远远不够,小学的口算要有时间限定,是否达标要用时间说话,也就是会算题还不够,主要还是要提速。
4:启智慧--智力体操,
不单纯地学习计算,着重培养孩子的数学思维能力,全面激发左右脑潜能,开发全脑。经过快心算的训练,学前孩子可以深刻的理解数学的.本质(包含),数的意义(基数,序数,和包含),数的运算机理(同数位的数的加减,)数学逻辑运算的方式,使孩子掌握处理复杂信息分解方法,发散思维,逆向思维得到了发展。孩子得到一个反应敏锐的大脑。
一、顺逆相加:用“顺逆相加”算式可求出若干个连续数的和。 例如着名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为
二、凑整巧算:用“凑整方法”,常常能使计算变得比较简便、快速。
三、恒等变形:是一种重要的思想和方法,也是一种重要的解题技巧。 利用我们学过的知识,去迚行有目的的数学变形,常常能使题目很快地获得解答。
四、拆数加减:在分数加减法运算中,把一个分数拆成两个分数相减 或相加,使隐含的数量关系明朗化,并抵消其中的'一些分数,往往可 大大地简化运算。
(1) 拆成两个分数相减。
五、先借后还:“先借后还”是一条重要的数学解题思想和解题技巧。
六、由小推大:一种数学思维方法,也是一种速算、巧算技巧。 遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题 目特点,找出一般规律,再推出题目的结果。
七、巧妙试商:除数是两位数的除法,可以采用一些巧妙试商方法, 提高计算速度
八、同分子分数加减 同分子分数的加减法,有以下的计算规律: 分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分 母,用原分母的和(戒差)乘以这相同的分子所得的积作分子。 分子相同,分母丌是互质数的两个分数相加减,也可按上述规律计算,只是最后 需要注意把得数约简为既约(最简)分数。
5. 一年级上册数学基础算法
小学一年级的数学学习是数学的基础入门,只有把这部分的内容学好了,才能让孩子在数学王国中快乐地遨游,我整理了一年级上册数学基础算法,希望能帮助到您。
小学一年级数学基础加减法规律和法则
加法
(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。
(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。
(3)两个数相加,交换它们的位置,得数不变。
减法
(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。
(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。
(3)一个数减另一个数,保持得数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。
先教分解
加法,实际上就是:将两个集合和在一起,变成一个集合。
减法:将一个集合分开,分成两个。
孩子真正的理解加减法的意义,不是算会那道题,而是理解加减法之间的关系。
比如:6个苹果,可以分成2个和4个苹果,也可以反过来说是4个和2个苹果,同时,2个和4个苹果(或者4个苹果和2个苹果)合起来就是6个苹果。
也就是说:
1、从分解组合开始教孩子,一边分,一边用语言表述,一定要用嘴巴说出来,能说出来的孩子,表示她自己真的掌握了。
2、从5以内的开始。先从分解2开始。
3、每次分开后表述完,要记得在合起来。
打基础的方法
1、学数数
学计算之前先学数数,这谁都知道,但是利用多种数数形式来为计算打基础,却被相当多的父母所忽视。不少父母在孩子会唱读1~100之后就认为孩子已学会了数数,而可以教计算了,但实际上孩子并没有真正建立数的概念,也没有真正掌握计数的技巧。
数数的内容其实很多,除了要建立数的一对一的概念以外,还要包括多种数数的技能,主要形式有:
①N加1,即按递增1的顺序正着数,这是学N加1计算的基础;
②N减1,即按递减1的顺序倒着数,这是学N减1计算的基础;
③数单数,建立奇数概念;
④数双数,建立偶数概念;
⑤逢10数,建立进位概念;
⑥逢5数,将5作为一个基本单元,这是一个很重要的数数技能,因为在提高数数和计算技能方面,5的重要性仅次于10。
2、计算N加1,凡是能正着依次数数并理解其含义是依次递增1个的幼儿,都能轻而易举地学会计算N加1,包括10加1、20加1、99加1乃至100加1。
3、计算N减1,凡是能倒着数数并理解其含义是依次递减1个的幼儿都能学会计算N减1的题,包括11减1,21减1、100减1乃至101减1。
4、整10相加或相减,如10加10、20加10、……90加10,凡是会逢10数数并理解其含义是依次递增或递减10个的幼儿都能很容易地学会。
5、整5相加或相减,如0加5、5加5、10加5乃至95加5,凡是会逢5数数并理解其含义是递增或递减5个的幼儿,掌握起来并不难。
6、计算10加N,包括10加1、10加2……10加9,幼儿一旦理解10加几就等于十几,不仅能快速运算10加N,还能推广至20加N、30加N乃至90加N。
7、两个相同数相加,包括1加1、2加2……9加9,对于会数双数的幼儿,当发现两个相同的数相加后的结果都是双数时,便会很容易地学会运算这类题。教学实践发现,幼儿普遍对两个相同数相加的题有自发的关注与兴趣,因而幼儿对这组题的掌握往往要先于10以内非N加1的题。
8、计算两数之和等于10的题,包括1加9、2加8、3加7、4加6及5加5,这组题的熟练与否对于进行10以上的运算是至关重要的。
9、口算(20以内),当幼儿已掌握了上述技能之后,就可以做20以内的口算题了。父母应注意提醒幼儿学会运用已掌握的计算技能来推算其它题,如由2加2等于4而推知2加3等于5,由3加7等于10而推知3加6等于9,9加9等于18而推知9加8等于17,等等。
10、竖式笔算(100以内),口算100以内的数即使是对学龄儿童也是不容易的,可是列成竖式之后,凡具备上述技能的学龄前幼儿稍加指点即可完成运算,因为一道两位数相加的题列成竖式后实际上就变成了两道一位数相加的题。目前,5岁左右的幼儿都在幼儿园里学会了书写阿拉伯数字,因而这个年龄段的幼儿进行独立的竖式运算是完全可能的。
编故事的方法
我在教孩子10以内的加减法运算的时候,经常编一些小故事,让孩子参与其中,不知不觉孩子就学会了运算。而且,每次孩子都对这种小故事表现出非常浓厚的兴趣,学起加减运算来非常轻松。
比如,学习8的加减法,我编了一个这样的小故事,其中经常和孩子互动一下,互相提问,甚至让孩子把故事编下去:
小猴子要买8个苹果送给奶奶。它来到市场上,看见红苹果挺诱人的,绿苹果也挺好的,于是,这两种苹果它一样买了几个。(红苹果买5个,绿苹果买几个?)
小猴子拎着装了8个苹果的框高高兴兴地往奶奶家走去。路上同小猪撞了一下,结果撞掉一个苹果,它们都不知道。(这时还剩几个苹果了?)
小猪是小猴子的好朋友,见到小猴很高兴。小猪说口渴了,小猴子就给小猪一个苹果解渴。(这时还剩几个苹果?)
看到小猪吃苹果吃得津津有味的,小猴子也想吃,于是它也拿了一个苹果吃了起来。(这时还剩几个苹果?)
突然,背后响起一声狮子的吼声:“吼——”不好了,狮子看见小猴子了,快跑啊!小猴子拎着框使劲往前跑,框里的苹果噼里啪啦地往外掉。
好不容易跑到奶奶家了,狮子也没有追来,小猴子终于松了口气。小猴子把苹果送给奶奶,可是它往框里一看:“咦?怎么只剩下2个苹果了呢?”
奶奶听完小猴子讲的途中的遭遇后,哈哈笑了起来。奶奶对小猴子说:“你来了就是最好的礼物了!”
就这样,故事讲完了。讲的过程中我还不时让孩子算算还有几个苹果,而后面的遇到狮子的事情也是孩子自己编出来的。整个过程非常轻松,既让孩子开拓了思维,又达到了学习的目的。
凑十法
凑十法是20以内进位加法的基本思路。运用凑十法能将20以内的进位加法转化为学生所熟悉的10加几的题目,从而化难为易。例如9+5,将5分成1和4,因为9凑十缺1,所以要分出1。所以9+5,就分解计算9+1=10、然后10+4=14,所以,孩子要牢记“9要1”、“8要2”、“7要3”、“6要4”、“5要5”凑十法简便易行,思考过程有“一看(看大数),二拆(拆小数),三凑十,四连加”
应该是用破十法:12可以分成10和2,用10-9=1,再用1+2=3,所以12-9=3
在教学中,我深有体会,低年级数学教学,使学生学好“两法”非常重要。“两法”即“凑十法”和“破十法”。凑十法是几和几合成十;破十法是从10里面拿出几还剩下几。
比如:教7+8=15有两种算法。一种是一个一个地加,算式:7+1+1+1+1+1+1+1+1=15,或8+1+1+1+1+1+1+1=15,这种方法对于接受能力差的学生不错,但这样加太繁,又浪费时间,多数同学都不适用。而凑十法就简便多了,方法是想8和几或7和几合成十(8和2、7和3),那么从7里面拿出2,7拿出2还剩下5元,或从8里面拿出3,8拿出3还剩下5,算式:8+2=10,10+5=15;或7+3=10,10+5=15。
教几加几等于十几,只要教会学生想几和几合成十,从几里面拿出几还剩下几,那么10加几就等于十几。
又如:教15-9=6有四种算法。一是用数数方法,一个一个地减,算式:15-1-1-1-1-1-1-1-1-1=6;二是用“平十”的方法先减5,再减4,算式:15-5=10,10-4=6;三是用“想加算减”的方法,想9加几等于15,15减9就等于几;四是用“破十法”,即把15分成10和5,10-9=1,1+5=6。几法比较,我觉得“破十法”最管用。第一种数数法太繁,浪费时间;第二种“平十法”先减5,再减4,因为这个“平十”不固定,有时是5,有时是6,有时是4……中间这个几和几合成9或几加几等几也就不固定,对于接受能力差一点的学生不好学;第三种“想加算减”就更难了。
我认为“两法”既好教又易学。因为“凑十”只有五组:1+9、2+8、3+7、4+6、5+5,我把它当成5个生字词来教给学生记,而1+9、5+5都比较容易记,剩下3个也不难,课前经常反复练习,师:1和9,生:凑成十;师:2和8,生:凑成十;师:倒过来,生:8和2凑成十;师“3和7……这样久而久之就能熟能生巧,所以教十几减几时,只要让学生懂得十几可以分成10和几,10减几剩下几,几十几=几就可以了。好几个接受能力较差的同学学了“两法”后,作业基本独立完成。如:12-7,他们很快就能说出:“10-7=3,3+2=5”13-8呢?“10-8=2,2+3=5。”从这些差生转化来看,教好“两法”非常重要。
而“两法”既互相联系,又互相转化,学生只要掌握“凑十法”,“破十法”也就容易了,但愿教低年级数学的老师都能教好学生学好“两法”,“两法”对提高教学质量起着重要的作用。
儿歌法 一加九,十匹小马骝;
1+9 10匹小马骝
2+8 10只老母鸭
3+7 10只小公鸡
4+6 10个小皮球
5+5 10只大老虎
6+4 10只水彩笔
7+3 10根小竹竿
8+2 10只小白鹅