1. 设计动态规划算法有哪些主要步骤
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
2. 动态规划算法的时间和空间复杂度是多少
动态规划算法一般是n步叠代计算局部最优解,每一步叠代需要计算m个子项,那么时间复杂度就是O(m*n)。如果只保存一步叠代的结果,空间复杂度就是O(m);如果需要保存k步叠代结果,空间复杂度就是O(m*k)。
3. 动态规划算法怎么计算
动态规划算法:
(1)分析最优解的性质,并刻画其结构特征。
(2)递归的定义最优解。
(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值。
(4)根据计算最优值时得到的信息,构造问题的最优解。
4. 详解动态规划算法
其实你可以这么去想。
能用动态规划解决的问题,肯定能用搜索解决。
但是搜素时间复杂度太高了,怎么优化呢?
你想到了记忆化搜索,就是搜完某个解之后把它保存起来,下一次搜到这个地方的时候,调用上一次的搜索出来的结果。这样就解决了处理重复状态的问题。
动态规划之所以速度快是因为解决了重复处理某个状态的问题。
记忆化搜索是动态规划的一种实现方法。
搜索到i状态,首先确定要解决i首先要解决什么状态。
那么那些状态必然可以转移给i状态。
于是你就确定了状态转移方程。
然后你需要确定边界条件。
将边界条件赋予初值。
此时就可以从前往后枚举状态进行状态转移拉。
5. 分治算法和动态规划有什么不同和联系
一、分治法与动态规划主要共同点:
1)二者都要求原问题具有最优子结构性质,都是将原问题分而治之,分解成若干个规模较小(小到很容易解决的程序)的子问题。然后将子问题的解合并,形成原问题的解。
二、分治法与动态规划实现方法:
① 分治法通常利用递归求解。
② 动态规划通常利用迭代法自底向上求解,但也能用具有记忆功能的递归法自顶向下求解。
三、分治法与动态规划主要区别:
① 分治法将分解后的子问题看成相互独立的。
② 动态规划将分解后的子问题理解为相互间有联系,有重叠部分。
6. 动态规划算法(pascal)
在计算够不够开销时
20%这个数据是废的
你可以先减去预算再考虑存多少钱
比如手头钱的数目为a
预算为b
存在妈妈处的钱为c
可以先从a中减去b
然后c就等于c+a
div
100
*100
var
略
begin
a:=0;
c:=0;
bo:=true;
for
i:=1
to
12
do
begin
read(b[i]);
inc(a,300);
if
a<b[i]
then
begin
writeln(i);
bo:=false;
break;
end
else
begin
c:=c+a
div
100*100;
dec(a,b[i]);
a:=a
mod
100;
end;
end;
if
bo
then
writeln(a+c+c
div
5);
end.
7. 算法设计,动态规划问题
usesmath;
var
n,i,j,l,r,k:longint;
f:array[1..100,1..100]oflongint;
a,b:Array[1..100]oflongint;
begin
read(n);
fori:=1tondo
read(a[i],b[i]);
fori:=1tondo
f[i,i]:=0;
fori:=2tondo
forj:=1ton-i+1do
begin
l:=j;r:=j+i-1;
f[l,r]:=maxlongint;
fork:=ltor-1do
f[l,r]:=min(f[l,r],f[l,k]+f[k+1,r]+a[l]*b[k]*b[r]);
end;
writeln(f[1,n]);
end.
8. C++算法,动态规划法实现TSP问题
c++listmatrixiteratoriostream算法
[cpp] view plainprint?
#include
#include
using namespace std ;
typedef list<</SPAN>int> LISTINT;
LISTINT listAnother;
LISTINT list_result;
int d[4][4]={{-1,3,6,7},{2,-1,8,6},{7,3,-1,5,},{7,3,7,-1}}; //路径权值
int matrix_length=4;
int getPath(int n,LISTINT list_org)
{
LISTINT::iterator i;
int minValue;
if(n==1)
{
i=list_org.begin();
minValue= d[*i-1][0];
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
}
else
{
int temp;
i=list_org.begin();
temp=*i;
list_org.erase(i);
i=list_org.begin();
minValue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
for(int j=2;j
{
i=list_org.begin();
for(int k=1;k
{
i++;
}
int tempvalue=*i;
list_org.erase(i);
list_org.push_front(tempvalue);
i=list_org.begin();
tempvalue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(tempvalue
{
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
minValue=tempvalue;
}
}
}
return minValue;
}
int main(int argc, char* argv[])
{
LISTINT list_org;
LISTINT::iterator h;
list_org.push_front(4);
list_org.push_front(3);
list_org.push_front(2);
list_org.push_front(1);
cout<<"旅行商问题动态规划算法"<<endl;
cout<<"路线长度的矩阵表示如下 (-1表示无限大)"<<endl;
for(int j=0;j
cout<<endl;
for(int k=0;k
cout<<" "<<d[j][k];
}
}
cout<<endl;
cout<<"计算结果:"<<getPath(4,list_org)<<endl;
list_result.push_front(1);
list_result.push_back(1);
cout<<"要走的路径:---->:";
for (h = list_result.begin(); h != list_result.end(); ++h)
cout << *h << " ";
cout << endl;
int i;
cin>>i;
return 0;
}
9. 什么是动态规划算法,常见的动态规划问题分析与求解
动态规划中递推式的求解方法不是动态规划的本质,本质,是对问题状态的定义和状态转移方程的定义。
10. 算法设计与分析 什么是动态规划
一般状态量列为表的行,决策量为表的列。 动态规划的本质是空间换时间,存在表格里,可以减少相同的计算。大大的缩短计算时间。