⑴ 编译器的工作分为哪几个阶段
编译器就是一个普通程序,没什么大不了的
什么是编译器?
编译器是一个将高级语言翻译为低级语言的程序。
首先我们一定要意识到编译器就是一个普通程序,没什么大不了的。
在没有弄明白编译器如何工作之前你可以简单的把编译器当做一个黑盒子,其作用就是输入一个文本文件输出一个二进制文件。
基本上编译器经过了以下几个阶段,等等,这句话教科书上也有,但是我相信很多同学其实并没有真正理解这几个步骤到底在说些什么,为了让你彻底理解这几个步骤,我们用一个简单的例子来讲解。
假定我们有一段程序:
while (y < z) {
int x = a + b;
y += x;
}
那么编译器是怎样把这一段程序人类认识的程序转换为CPU认识的二进制机器指令呢?
提取出每一个单词:词法分析
首先编译器要把源代码中的每个“单词”提取出来,在编译技术中“单词”被称为token。其实不只是每个单词被称为一个token,除去单词之外的比如左括号、右括号、赋值操作符等都被称为token。
从源代码中提取出token的过程就被称为词法分析,Lexical Analysis。
经过一遍词法分析,编译器得到了以下token:
T_While while
T_LeftParen (
T_Identifier y
T_Less <
T_Identifier z
T_RightParen )
T_OpenBrace {
T_Int int
T_Identifier x
T_Assign =
T_Identifier a
T_Plus +
T_Identifier b
T_Semicolon ;
T_Identifier y
T_PlusAssign +=
T_Identifier x
T_Semicolon ;
T_CloseBrace }
就这样一个磁盘中保存的字符串源代码文件就转换为了一个个的token。
这些token想表达什么意思:语法分析
有了这些token之后编译器就可以根据语言定义的语法恢复其原本的结构,怎么恢复呢?
原来,编译器在扫描出各个token后根据规则将其用树的形式表示出来,这颗树就被称为语法树。
语法树是不是合理的:语义分析
有了语法树后我们还要检查这棵树是不是合法的,比如我们不能把一个整数和一个字符串相加、比较符左右两边的数据类型要相同,等等。
这一步通过后就证明了程序合法,不会有编译错误。
⑵ 关于C语言的编译过程,GCC与windows下的c编译器(如VS2010)的编译过程是否存在区别
一般的编译步骤是如此, 但也有一步到位的编译器
⑶ 编译器的组成及各部分的功能及作用
1. 词法分析 词法分析器根据词法规则识别出源程序中的各个记号(token),每个记号代表一类单词(lexeme)。源程序中常见的记号可以归为几大类:关键字、标识符、字面量和特殊符号。词法分析器的输入是源程序,输出是识别的记号流。词法分析器的任务是把源文件的字符流转换成记号流。本质上它查看连续的字符然后把它们识别为“单词”。 2. 语法分析 语法分析器根据语法规则识别出记号流中的结构(短语、句子),并构造一棵能够正确反映该结构的语法树。 3. 语义分析 语义分析器根据语义规则对语法树中的语法单元进行静态语义检查,如果类型检查和转换等,其目的在于保证语法正确的结构在语义上也是合法的。 4. 中间代码生成 中间代码生成器根据语义分析器的输出生成中间代码。中间代码可以有若干种形式,它们的共同特征是与具体机器无关。最常用的一种中间代码是三地址码,它的一种实现方式是四元式。三地址码的优点是便于阅读、便于优化。 5. 中间代码优化 优化是编译器的一个重要组成部分,由于编译器将源程序翻译成中间代码的工作是机械的、按固定模式进行的,因此,生成的中间代码往往在时间和空间上有很大浪费。当需要生成高效目标代码时,就必须进行优化。 6. 目标代码生成 目标代码生成是编译器的最后一个阶段。在生成目标代码时要考虑以下几个问题:计算机的系统结构、指令系统、寄存器的分配以及内存的组织等。编译器生成的目标程序代码可以有多种形式:汇编语言、可重定位二进制代码、内存形式。 7 符号表管理 符号表的作用是记录源程序中符号的必要信息,并加以合理组织,从而在编译器的各个阶段能对它们进行快速、准确的查找和操作。符号表中的某些内容甚至要保留到程序的运行阶段。 8 出错处理用户编写的源程序中往往会有一些错误,可分为静态错误和动态错误两类。所谓动态错误,是指源程序中的逻辑错误,它们发生在程序运行的时候,也被称作动态语义错误,如变量取值为零时作为除数,数组元素引用时下标出界等。静态错误又可分为语法错误和静态语义错误。语法错误是指有关语言结构上的错误,如单词拼写错、表达式中缺少操作数、begin和end不匹配等。静态语义错误是指分析源程序时可以发现的语言意义上的错误,如加法的两个操作数中一个是整型变量名,而另一个是数组名等。
⑷ 什么是编译器
编译器
编译器是一种特殊的程序,它可以把以特定编程语言写成的程序变为机器可以运行的机器码。我们把一个程序写好,这时我们利用的环境是文本编辑器。这时我程序把程序称为源程序。在此以后程序员可以运行相应的编译器,通过指定需要编译的文件的名称就可以把相应的源文件(通过一个复杂的过程)转化为机器码了。
[编辑]编译器工作方法
首先编译器进行语法分析,也就是要把那些字符串分离出来。然后进行语义分析,就是把各个由语法分析分析出的语法单元的意义搞清楚。最后生成的是目标文件,我们也称为obj文件。再经过链接器的链接就可以生成最后的可执行代码了。有些时候我们需要把多个文件产生的目标文件进行链接,产生最后的代码。我们把一过程称为交叉链接。
一个现代编译器的主要工作流程如下:
* 源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables)
工作原理
编译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
⑸ 编译器笔记48-代码优化-数据流分析
语句的数据流模式
⑹ 编译原理的数据结构
编译原理一直是计算机学习的必修课.
当然,由编译器的阶段使用的算法与支持这些阶段的数据结构之间的交互是非常强大的。编译器的编写者尽可能有效实施这些方法且不引起复杂性。理想的情况是:与程序大小成线性比例的时间内编译器,换言之就是,在0 ( n )时间内,n是程序大小的度量(通常是字符数)。本节将讲述一些主要的数据结构,它们是其操作部分阶段所需要的,并用来在阶段中交流信息。 临时文件(temporary file):计算机过去一直未能在编译器时将整个程序保留在存储器中。这一问题已经通过使用临时文件来保存翻译时中间步骤的结果或通过“匆忙地”编译(也就是只保留源程序早期部分的足够信息用以处理翻译)解决了。存储器的限制现在也只是一个小问题了,现在可以将整个编译单元放在存储器之中,特别是在可以分别编译的语言中时。但是偶尔还是会发现需要在某些运行步骤中生成中间文件。其中典型的是代码生成时需要反填(backpatch)地址。例如,当翻译如下的条件语句时 if x = 0 then ... else ... 在知道else部分代码的位置之前必须由文本跳到else部分:
CMP X,0 JNE NEXT ;;
location of NEXT not yet known < code for then-part > NEXT : < code for else-part >
通常,必须为NEXT的值留出一个空格,一旦知道该值后就会将该空格填上,利用临时文件可以很容易地做到这一点。
如果想利用上面的编译原理开发一套属于自己的编程语言,或者想在一个产品中嵌入编程语言,可以参考zengl开源网开发的zengl编程语言,该编程语言为国人使用C语言开发,里面包含两个部分,一个是编译器,一个是解释执行中间代码的虚拟机。编译器包含了词法扫描,语法分析,中间代码输出等,虚拟机则类似JAVA一样解释执行中间代码。作者将所有的版本都公布出来,好让读者可以由浅入深的做研究,并且为了证明该编程语言的实用性,还结合SDL游戏开发库开发了一款图形界面和命令行界面的21点扑克小游戏 。
zengl编程语言目前适用平台为windows和linux (最开始在Linux下使用gcc开发,后来移植到windows平台)
⑺ 典型的编译器可以划分成几个主要的逻辑阶段
这是我们今天的作业,
典型的编译器可以划分成七个主要的逻辑阶段,分别是词法分析器、语法分析器、语义分析器、中间代码生成器、独立于机器的代码优化器、代码生成器、依赖于机器的代码优化器。各阶段的主要功能:
(1)词法分析器:词法分析阅读构成源程序的字符流,按编程语言的词法规则把它们组成词法记号流。
(2)语法分析器:按编程语言的语法规则检查词法分析输出的记号流是否符合这些规则,并依据这些规则所体现出的该语言的各种语言构造的层次性,用各记号的第一元建成一种树形的中间表示,这个中间表示用抽象语法的方式描绘了该记号流的语法情况。
(3)语义分析器:使用语法树和符号表中的信息,依据语言定义来检查源程序的语义一致性,以保证程序各部分能有意义地结合在一起。它还收集类型信息,把它们保存在符号表或语法树中。
(4)中间代码生成器:为源程序产生更低级的显示中间表示,可以认为这种中间表示是一种抽象机的程序。
(5)独立于机器的代码优化器:试图改进中间代码,以便产生较好的目标代码。通常,较好是指执行较快,但也可能是其他目标,如目标代码较短或目标代码执行时能耗较低。
(6)代码生成器:取源程序的一种中间表示作为输入并把它映射到一种目标语言。如果目标语言是机器代码,则需要为源程序所用的变量选择寄存器或内存单元,然后把中间指令序列翻译为完成同样任务的机器指令序列。
(7)依赖于机器的代码优化器:试图改进目标机器代码,以便产生较好的目标机器代码。
⑻ 编译原理
编译原理是计算机专业的一门重要专业课,旨在介绍编译程序构造的一般原理和基本方法。内容包括语言和文法、词法分析、语法分析、语法制导翻译、中间代码生成、存储管理、代码优化和目标代码生成。 编译原理是计算机专业设置的一门重要的专业课程。编译原理课程是计算机相关专业学生的必修课程和高等学校培养计算机专业人才的基础及核心课程,同时也是计算机专业课程中最难及最挑战学习能力的课程之一。编译原理课程内容主要是原理性质,高度抽象[1]。
中文名
编译原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
领域
计算机专业的一门重要专业课[1]
快速
导航
编译器
编译原理课程
编译技术的发展
编译的基本流程
编译过程概述
基本概念
编译原理即是对高级程序语言进行翻译的一门科学技术, 我们都知道计算机程序由程序语言编写而成, 在早期计算机程序语言发展较为缓慢, 因为计算机存储的数据和执行的程序都是由0、1代码组合而成的, 那么在早期程序员编写计算机程序时必须十分了解计算机的底层指令代码通过将这些微程序指令组合排列从而完成一个特定功能的程序, 这就对程序员的要求非常高了。人们一直在研究如何如何高效的开发计算机程序, 使编程的门槛降低。[2]
编译器
C语言编译器是一种现代化的设备, 其需要借助计算机编译程序, C语言编译器的设计是一项专业性比较强的工作, 设计人员需要考虑计算机程序繁琐的设计流程, 还要考虑计算机用户的需求。计算机的种类在不断增加, 所以, 在对C语言编译器进行设计时, 一定要增加其适用性。C语言具有较强的处理能力, 其属于结构化语言, 而且在计算机系统维护中应用比较多, C语言具有高效率的优点, 在其不同类型的计算机中应用比较多。[3]
C语言编译器前端设计
编译过程一般是在计算机系统中实现的, 是将源代码转化为计算机通用语言的过程。编译器中包含入口点的地址、名称以及机器代码。编译器是计算机程序中应用比较多的工具, 在对编译器进行前端设计时, 一定要充分考虑影响因素, 还要对词法、语法、语义进行分析。[3]
1 词法分析[3]
词法分析是编译器前端设计的基础阶段, 在这一阶段, 编译器会根据设定的语法规则, 对源程序进行标记, 在标记的过程中, 每一处记号都代表着一类单词, 在做记号的过程中, 主要有标识符、关键字、特殊符号等类型, 编译器中包含词法分析器、输入源程序、输出识别记号符, 利用这些功能可以将字号转化为熟悉的单词。[3]
2 语法分析[3]
语法分析是指利用设定的语法规则, 对记号中的结构进行标识, 这包括句子、短语等方式, 在标识的过程中, 可以形成特殊的结构语法树。语法分析对编译器功能的发挥有着重要影响, 在设计的过程中, 一定要保证标识的准确性。[3]
3 语义分析[3]
语义分析也需要借助语法规则, 在对语法单元的静态语义进行检查时, 要保证语法规则设定的准确性。在对词法或者语法进行转化时, 一定要保证语法结构设置的合法性。在对语法、词法进行检查时, 语法结构设定不合理, 则会出现编译错误的问题。前端设计对精确性要求比较好, 设计人员能够要做好校对工作, 这会影响到编译的准确性, 如果前端设计存在失误, 则会影响C语言编译的效果。[3]
⑼ 编译器的工作原理
编译 是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器语言)的翻译过程。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址, 以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的EXE,
所以我们电脑上的文件都是经过编译后的文件。
⑽ FPGA中软件编译器和硬件综合器区别是什么
软件编译器是把高级语言编译成可执行文件,比如二进制代码
典型编译器如C/C++编译器
硬件综合器是把RTL级别的硬件代码综合成网表文件。是一个具体优化+映射的过程,代表语言是verilog/VHDL,转换成网表netlist