① 幂的运算法则
幂的运算法则如下:
1、同底数幂的乘法;
2、同底数幂的除法;
3、幂的乘方与积的乘方。
同底数幂的乘法:a·a·a=a,在整个式子中字母m、n、p均为正整数,不然的话整个式子是没有办法成立的。
同底数幂的除法:同底数幂的除法分为三种,第一种同底数幂的除法a÷a=a(),其中a不等于0,m和n均为正整数,而且m大于n。零指数a=1,其中a不等于0。最后就是负整数指数幂a= (其中a≠0, p是正整数),若是当a=0时没有意义的话,则0,0都是没有意义的。
幂的乘方与积的乘方:幂的乘方为(a)=a(),和积的乘方(ab)=ab,以上就是幂的运算法则的全部算法了。
幂的运算注意事项
1、幂的底数a可以是具体的数也可以是多项式。
2、积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。积的乘方可推广到3个以上因式的积的乘方。
3、在做题的时候要看清楚是同底数幂相乘的时候底数不变的情况下指数相加,而同底数幂相除的情况下,底数不变指数是需要相减的,而幂的乘方底数不变,指数相乘,而指数幂相乘,指数不变,底数相乘,通指数幂相乘指数不变,底数相除。
② 幂函数运算法则是什么
同底数幂的乘法:底数不变,指数相加。
同底数幂的除法:底数不变,指数相减。
幂的乘方:底数不变,指数相乘。
积的乘方:等于各因数分别乘方的积。
商的乘方(分式乘方):分子分母分别乘方,指数不变。
幂函数的单调区间(当a为分数时)
③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。
④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。
当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性:
①当α>0,分母为偶数时,函数在第一象限内单调递增。
②当α>0,分母为奇数时,函数在第一三象限各象限内单调递增。
③当α<0,分母为偶数时,函数在第一象限内单调递减。
④当α<0,分母为奇数时,函数在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。
(3)当α>1时,幂函数图形下凹(竖抛)。
当0<α<1时,幂函数图形上凸(横抛)。
(4)在(0,1)上,幂函数中α越大,函数图像越靠近x轴;在(1,﹢∞)上幂函数中α越大,函数图像越远离x轴。
(5)当α<0时,α越小,图形倾斜程度越大。
(6)显然幂函数无界限。
③ 幂运算的法则是什么
幂运算常用的8个公式是:
1、同底数幂相乘:a^m·a^n=a^(m+n)。
2、幂的乘方:(a^m)n=a^mn。
3、积的乘方:(ab)^m=a^m·b^m。
4、同底数幂相除:a^m÷a^n=a^(m-n)(a≠0)。
5、a^(m+n)=a^m·a^n。
6、a^mn=(a^m)·n。
7、a^m·b^m=(ab)^m。
8、a^(m-n)=a^m÷a^n(a≠0)。
法则口诀
同底数幂的乘法:底数不变,指数相加幂的乘方。
同底数幂的除法:底数不变,指数相减幂的乘方。
幂的指数乘方:等于各因数分别乘方的积商的乘方。
分式乘方:分子分母分别乘方,指数不变。
④ 幂运算所有的运算法则。
1、同底数幂的乘法:
aᵐ·aⁿ·aᵖ=aᵐ⁺ⁿ⁺ᵖ(m, n, p都是正整数)。
2、幂的乘方(aᵐ)ⁿ=a(ᵐⁿ),与积的乘方(ab)ⁿ=aⁿbⁿ
3、同底数幂的除法:
(1)同底数幂的除法:aᵐ÷aⁿ=a(ᵐ⁻ⁿ)(a≠0, m, n均为正整数,并且m>n)
(2)零指数:a⁰=1 (a≠0);
(3)负整数指数幂:a⁻ᵖ= (a≠0, p是正整数),当a=0时没有意义,0⁻²,0⁻²都无意义。
3、负指数幂
当底数n≠0时,由于n⁰÷nᵃ=1÷nᵃ=1/nᵃ,根据幂的运算规则可知,n⁰÷nᵃ=n⁰⁻ᵃ=n⁻ᵃ=1/nᵃ
因此定义负指数幂如下:a⁻ᵖ=1/aᵖ,a≠0。
⑤ 幂运算法则
幂运算法则为:同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。
(一)同底数幂的乘法:a m ×a n =a (m + n) (a≠0, m, n均为正整数,并且m>n)
(1)同底数幂的乘法的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式。
(2)指数都是正整数
(3)可以推广到三个或三个以上的同底数幂相乘,即a m ·a n ·a p ....=a m+n+p+... (m, n, p都是正整数)。
(4)乘法是只要求底数相同则可用法则计算,即底数不变指数相加。
(二)同底数幂的除法:a m ÷a n =a (m-n) (a≠0, m, n均为正整数,并且m>n)
(1)同底数幂的除法,底数a是不能为零的,否则除数为零,除法就没有意义了。
(2)同底数幂的两个幂相除,如果被除式的指数与除式的指数相等,那么商等于1,即a m ÷a n =1,m是任意自然数。a≠0, 即转化成a 0 =1(a≠0)。
(3)同底数幂的两个幂相除,如果被除式的指数小于除式的指数,即m-n<0时,指数部分为负整数则转化成负整数指数幂,再用负整数指数幂法则。
(三)幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n
(1)幂的乘方,(a^m)^n=a^(mn),(m, n都为正整数)运用法则时注意以下以几点:
①幂的底数a可以是具体的数也可以是多项式。
②要和同底数幂的乘法法则相区别。
(2)积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意以下几点:
①积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。
②积的乘方可推广到3个以上因式的积的乘方。
⑥ 幂的运算法则
幂运算是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。
同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n)
同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n),
幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn),
积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np).
(其中m,n,p都是整数,且a,b均不为0。)
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
⑦ 幂的运算法则公式14个
1、同底数幂的乘法:
同底数幂相乘,底数不变,指数相加。
am×an=a(m+n)(a≠0,m,n均为正整数,并且m>n)
2、同底数幂的除法:
同底数幂相除,底数不变,指数相减。
am÷an=a(m-n)(a≠0,m,n均为正整数,并且m>n)
3、幂的乘方:
幂的乘方,底数不变,指数相乘。
(a^m)^n=a^(mn),(m,n都为正整数)
4、积的乘方:
等于将积的每个因式分别乘方,再把所得的幂相乘。
(ab)^n=a^nb^n,(n为正整数)
5、零指数:
a0=1(a≠0)
6、负整数指数幂
a-p=1/ap(a≠0,p是正整数)
7、负实数指数幂
a^(-p)=1/(a)^p或(1/a)^p(a≠0,p为正实数)
8、正整数指数幂
(1)aman=am+n
(2)(am)n=amn
(3)am/an=am-n(m大于n,a≠0)
(4)(ab)n=anbn
9、分式的乘方:
把分式的分子、分母分别乘方即为乘方结果。
(a/b)^n=(a^n)/(b^n),(n为正整数)
⑧ 幂运算的14个公式
幂的运算法则公式14个分别是:am×an=a(m+n)、am÷an=a(m-n)、(a^m)^n=a^(mn)、(ab)^n=a^nb^n、a0=1(a≠0)、a-p=1/ap、a^(-p)=1/(a)^p、(1/a)^p、aman=am+n、(am)n=amn、am/an=am-n、(ab)n=anbn、(a/b)^n=(a^n)/(b^n)、aᵐ×aⁿ×aᵖ=aᵐ⁺ⁿ⁺ᵖ。
1、幂是指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫作n的m次幂,也叫n的m次方。数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”
是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的。
2、这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫作幂。
运算规则:
1、同底数幂相乘,底数不变,指数相加。
2、同底数幂相除,底数不变,指数相减。
3、幂的乘方,底数不变,指数相乘。
4、同指数幂相乘,指数不变,底数相乘。
5、同指数幂相除,指数不变,底数相除。