Ⅰ 高中数学概率计算法则
高中数学概率计算法则主要为概率的加法法则
概率的加法法则为:
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:若B包含A,则P(B-A)= P(B)-P(A)
推论4(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)
以上公式就被称为全概率公式。
Ⅱ 什么是用水定额概率测算法
概率测定法的主要方法是水平衡测试。是指在一定的生产技术和用水条件下,通过对某种产品的生产过程用水量和产品产量进行实测和分析计算,并考虑各种影响因素加以修正,从而确定用水定额的方法。
概率测定法的一般程序如下。
(1)测定时段内生产技术和管理应处于正常条件下。
(2)选择有代表性的生产时段进行测定,即要考虑产品生产的复杂性和影响用水的季节变化等因素。
(3)确定测定次数进行水平衡测试,以获取制定定额所需各类用水数据。
(4)对水平衡测试阶段内的产品产量进行统计计算。
(5)计算第i次测定的单位产品用水量 。
(m3/单位产品)
式中: ——第i次测定的用水量值,m3;
——与 对应的产品数量。
(6)据 值,计算其平均值 。
式中: ——测定次数。
(7)分析各类影响因素,对 值进行修正,最终确定该类产品的用水定额。
Ⅲ 概率计算公式是什么
条件概率:
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式:
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)
全概率公式:
设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。
概率算法:概率算法的一个基本特征是,对所求问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。
随机数在概率算法设计中扮演着十分重要的角色。在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
Ⅳ 概率算法的概率
概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法。
数值概率算法常用于数值问题的求解。这类算法所得到的往往是近似解。而且近似解的精度随计算时间的增加不断提高。在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。
蒙特卡罗算法用于求问题的准确解。对于许多问题来说,近似解毫无意义。例如,一个判定问题其解为“是”或“否”,二者必居其一,不存在任何近似解答。又如,我们要求一个整数的因子时所给出的解答必须是准确的,一个整数的近似因子没有任何意义。用蒙特卡罗算法能求得问题的一个解,但这个解未必是正确的。求得正确解的概率依赖于算法所用的时间。算法所用的时间越多,得到正确解的概率就越高。蒙特卡罗算法的主要缺点就在于此。一般情况下,无法有效判断得到的解是否肯定正确。
拉斯维加斯算法不会得到不正确的解,一旦用拉斯维加斯算法找到一个解,那么这个解肯定是正确的。但是有时候用拉斯维加斯算法可能找不到解。与蒙特卡罗算法类似。拉斯维加斯算法得到正确解的概率随着它用的计算时间的增加而提高。对于所求解问题的任一实例,用同一拉斯维加斯算法反复对该实例求解足够多次,可使求解失效的概率任意小。
舍伍德算法总能求得问题的一个解,且所求得的解总是正确的。当一个确定性算法在最坏情况下的计算复杂性与其在平均情况下的计算复杂性有较大差别时,可以在这个确定算法中引入随机性将它改造成一个舍伍德算法,消除或减少问题的好坏实例间的这种差别。舍伍德算法精髓不是避免算法的最坏情况行为,而是设法消除这种最坏行为与特定实例之间的关联性。
Ⅳ 概率算法
最近做了一个活动抽奖需求,项目需要控制预算,概率需要分布均匀,这样才能获得所需要的概率结果。
例如抽奖得到红包奖金,而每个奖金的分布都有一定概率:
现在的问题就是如何根据概率分配给用户一定数量的红包。
算法思路 :生成一个列表,分成几个区间,例如列表长度100,1-40是0.01-1元的区间,41-65是1-2元的区间等,然后随机从100取出一个数,看落在哪个区间,获得红包区间,最后用随机函数在这个红包区间内获得对应红包数。
时间复杂度 :预处理O(MN),随机数生成O(1),空间复杂度O(MN),其中N代表红包种类,M则由最低概率决定。
优缺点 :该方法优点是实现简单,构造完成之后生成随机类型的时间复杂度就是O(1),缺点是精度不够高,占用空间大,尤其是在类型很多的时候。
算法思路 :离散算法通过概率分布构造几个点[40, 65, 85, 95,100],构造的数组的值就是前面概率依次累加的概率之和。在生成1~100的随机数,看它落在哪个区间,比如50在[40,65]之间,就是类型2。在查找时,可以采用线性查找,或效率更高的二分查找。
算法复杂度 :比一般算法减少占用空间,还可以采用二分法找出R,这样,预处理O(N),随机数生成O(logN),空间复杂度O(N)。
优缺点 :比一般算法占用空间减少,空间复杂度O(N)。
算法思路 :Alias Method将每种概率当做一列,该算法最终的结果是要构造拼装出一个每一列合都为1的矩形,若每一列最后都要为1,那么要将所有元素都乘以5(概率类型的数量)。
此时会有概率大于1的和小于1的,接下来就是构造出某种算法用大于1的补足小于1的,使每种概率最后都为1,注意,这里要遵循一个限制:每列至多是两种概率的组合。
最终,我们得到了两个数组,一个是在下面原始的prob数组[0.75,0.25,0.5,0.25,1],另外就是在上面补充的Alias数组,其值代表填充的那一列的序号索引,(如果这一列上不需填充,那么就是NULL),[4,4,0,1,NULL]。当然,最终的结果可能不止一种,你也可能得到其他结果。
举例验证下,比如取第二列,让prob[1]的值与一个随机小数f比较,如果f小于prob[1],那么结果就是2-3元,否则就是Alias[1],即4。
我们可以来简单验证一下,比如随机到第二列的概率是0.2,得到第三列下半部分的概率为0.2 * 0.25,记得在第四列还有它的一部分,那里的概率为0.2 * (1-0.25),两者相加最终的结果还是0.2 * 0.25 + 0.2 * (1-0.25) = 0.2,符合原来第二列的概率per[1]。
算法复杂度 :预处理O(NlogN),随机数生成O(1),空间复杂度O(2N)。
优缺点 :这种算法初始化较复杂,但生成随机结果的时间复杂度为O(1),是一种性能非常好的算法。
Ⅵ 概率计算公式
12粒围棋子从中任取3粒的总数是C(12,3)
取到3粒的都是白子的情况是C(8,3)
∴概率
C(8,3)
P=——————=14/55
C(12,3)
附:排列、组合公式
排列:从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。
排列数:从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Anm
排列公式:A(n,m)=n*(n-1)*.....(n-m+1)
A(n,m)=n!/(n-m)!
组合:从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。
组合数:从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm
组合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!)
C(n,m)=C(n,n-m)
Ⅶ 概率计算算法
由于已知马尔可夫模型参数和观察序列,所以有
所以,利用最后一条公式就可求出概率,但是此时运算次数为 (T+T+2)*N T ,时间复杂度为O(TN T )
把隐马模型想象成一个T×N个顶点的图,其意义为T个时刻,每个时刻都有N种可能的状态。每个点为T个时刻,N中状态集合中的一种,每条边为从 i 时刻某个状态到 i+1 时刻另外一个状态的转移。
每个点存储前向概率,每条边记录 a i T j T *b jk 。即 T 时刻是状态 i ,且从状态 i 转移到状态 j 的概率以及状态 j 产生观测 k 的概率。
前向概率定义:在此模型下,输入如此观测序列且当前状态为 q i 的概率
算法:
后向概率:此刻状态为q i ,后面序列出现的概率是多大。