⑴ 乘法巧算速算方法
1、一位数乘法法则整数乘法低位起,一位数乘法一次积。
个位数乘得若干一,积的末位对个位。
计算准确对好位,乘法口诀是根据。
2、两位数乘法法则整数乘法低位起,两位数乘法两次积。
个位数乘得若干一,积的末位对个位。
十位数乘得若干十,积的末位对十位。
计算准确对好位,两次乘积加一起。
1、多位数乘法法则整数乘法低位起,几位数乘法几次积。
个位数乘得若干一,积的末位对个位。
十位数乘得若干十,积的末位对十位。
百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。
2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。
乘法的计算法则:
(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
(2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)
⑵ 乘法巧算有哪些方法
十几乘以十几是头乘头、尾相加、尾相乘。比如12×13=156。而到了二十几乘以二十n 几,则任意两位数乘以任意两位数,其方法是头乘头、尾乘尾、头乘以后面的尾,尾乘以后 面的头,两个得数相加再补加个0。比如:24×25它用2×2=44×5=202×4=82×5= 1010+8=18然后补0也就是180(实际是24×25=420+180=600)
2
/10
不信你试试看!:)
3
/10
一、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×17
15 + 7 = 22
5 × 7 = 35
---------------
255
即15×17 = 255
解释:
15×17
=15 ×(10 + 7)
=15 × 10 + 15 × 7
=150 + (10 + 5)× 7
=150 + 70 + 5 × 7
=(150 + 70)+(5 × 7)
为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。两位数乘法的巧算技巧
例:17 × 19
17 + 9 = 26
7 × 9 = 63
连在一起就是255,即260 + 63 = 323
4
/10
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 31
50 × 30 = 1500
50 + 30 = 80
------------------
1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。两位数乘法的巧算技巧
例:81 × 91
80 × 90 = 7200
80 + 90 = 170
------------------
7370
1
------------------
7371
原理大家自己理解就可以了。两位数乘法的巧算技巧
5
/10
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 × 46
(43 + 6)× 40 = 1960
3 × 6 = 18
----------------------
1978
例:89 × 87
(89 + 7)× 80 = 7680
9 × 7 = 63
----------------------
7743
6
/10
四、首位相同,两尾数和等于10的两位数相乘两位数乘法的巧算技巧
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
⑶ 多位数乘法的快速计算方法有哪些
多位数乘法的快速计算方法如下:
1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
乘法原理:
如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
设 A是 m×n 的矩阵。
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
⑷ 两位数乘两位数的速算法有哪些
如:
由图1可以看到
个位为乘数1的个位乘以乘数2的个位所得到的个位,即7x8 = 56,取个位为6,向十位进5
十位为乘数1的十位乘以乘数2的个位加乘数2的十位乘以乘数1的个位,即1x8 + 2x7 = 22,取2向百位进2
百位为乘数1的十位乘以乘数2的十位,即 1x2 = 2
最终个位、十位、百位为当前值加上对应的进位,所以个位为6,十位为2+5= 7,百位为2+2 = 4
首同尾和10的两位数相乘
我们分析87和83这两个数,一个两位数的第一位数叫首数,也叫头,末尾那个数叫尾数,也叫尾。87和83的首数相同,我们简称首同,尾数之和7+3=10,我们称做尾和10。
首同尾和10的两位数相乘,可按下面的速算方法计算,一首数加1后,头×头与尾×尾连写就是所求的乘积。
例如:87×83=7221
运算程序,一首数8加1变成9,头×头是9×8得72,尾×尾是7×3=21,72与21写在一起,即7221。
但是,在运算过程中,如果出现尾×尾小于10,那么就在其前面添一个“0”。
⑸ 两位数相乘速算口诀是什么
两位数乘两位数的速算法的口诀是头乘头,尾加尾,尾乘尾,相同,尾互补。
两位数乘法速算口诀般口诀首位之积排在前,首尾交叉积之和十倍再加尾数积。数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。
头同尾合十相关介绍:
头同尾合十是一个乘法算式。例如:28*22.两个因数第一个数字2相同,第二个8+2=10,故称头同尾合十。
两个两位数,如果十位数字相同,个位数之和是10,就称这两个数为“头同尾合十”的两位数。例如,23与27、62与68。“头同尾合十”的两位数相乘可以这样速算:头x(头+1)x100+尾1x尾2。
尾数相乘,得出的答案占后两位;头乘(头+1),占前一位到两位,就可以得出积。
⑹ 速算乘法技巧
全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算
计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无以伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。
(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。
⑺ 小学速算技巧
任意三位数平方的速算方法,如:126×126。
速算方法:将个位数与个位数相乘,得6×6=36,将6写在最终答案的个位数上,向十位进3;将百位和十位上的数与个位上的数相乘再扩大两倍,即12×6=72,再乘以2得144,将4写在最终答案的十位数上,加上前面的进位3,最终答案的十位数上的数字为7,向百位数进位14;将百位数和十位数上的数字进行平方,即12×12=144,加上进位14,得158,连起来就是126×126=15876.
如:524×524=52×52…52x4x2…4×4=(25…20…4)…416…16=2704…(416+1)…6=274576.
423×423=42×42…42x3x2…3×3=(16…16…4)…252…9=1764…252…9=178929.
个位数是5的三位数平方速算方法,如:115×115。
速算方法:将个位数前面的数11加1,得12乘以个位数前面的数字11,即12×11=132;将个位与个位相乘得出的数(这个数肯定都是25)写在最终答案的十位和个位上;连起来就是115×115=13225.
如:435×435=(43×44)…25=(16…28…12)…25=189225.
如:755×755=(75×76)…25=(49…77…30)…25=570025.
任意两位数与两位数相乘的速算方法,如:21×32.
速算方法:将两个十位数上的数字相乘,写在最终答案的百位数上,即2×3=6;将两个两位数的个位与十位交叉相乘然后再相加写在最终答案的十位数上,即2×2+1×3=7;将两个个位数上的数字相乘得到的答案写在最终答案的个位数上,即1×2=2;连起来就是21×32=672.
如:12×31=1×3…(1×1)+(2×3)…2×1=3…7…2=372.
13×23=1×2…(1×3)+(3×2)…3×3=299.
这里要注意:如果写在最终答案个位和十位数上的数大于9的话要向前面进位。
如:37×49=3×4…(3×9)+(7×4)…7×9=12…55…63=12…(55+6)…3=(12+6)…1…3=1813.
35×82=3×8…(3×2)+(5×8)…5×2=24…46…10=2870.
九十几与九十几相乘的速算方法,如:98×93。
速算方法:将100减去其中一个减数,即100-98=2,再用另一个减数减去得到的数,即93-2=91;将100分别减去两个减数,得到的两个数再相乘,即(100-98)x(100-93)=14;连起来就是98×93=9114。
如:97×92=97-(100-92)…(100-97)x(100-92)=97-8…3×8=8924.
96×95=91…20=9120.
这里要注意,如果第二步中100分别减去减数再相乘得到的数一位数,那么要在前面加0.
如:98×97=98-3…2×3=95…06=9506.
99×94=93…6=9306.
两位数中互补数与叠数相乘的速算方法,首先要讲讲什么是互补数和叠数。
互补数,相信前面的文章中都有提到,就是两个数相加成整十、整百、整千。如:7和3是互补数、48和52是互补数、127和873是互补数。
叠数,就更好理解了,就是个位、十位、百位都一样的数。如66、555、222等都是叠数。
下面就来讲讲两位数中互补数与叠数相乘的速算方法,如:73×66。
速算方法:将互补数中的十位数加上数字1然后再乘以叠数中的个位数,即(7+1)x6=48;将两个个位数上的数字相乘,即3×6=18;连起来就是73×66=4818.
如:82×77=(8+1)x7…2×7=63…14=6314.
64×99=63…36=6336.
这里要注意,如果两个个位数上的数字相乘得到的数是个位数的话,要在前面加个0.
如:64×22=(6+1)x2…4×2=14…8=14…08=1408.
91×33=30…3=3003.
十位数为0的两个三位数相乘的速算方法,如:302×407。
速算方法:第一步将两个百位数上的数字相乘,即3×4=12;第二步将百位数与个位数交叉相乘然后再相加,即3×7+2×4=29;第三步将个位与个位相乘,即2×7=14;连起来就是302×407=122914.
如:506×803=(5×8)…(5×3)+(6×8)…6×3=40…63…18=406318.
403×207=8…34…21=83421.
这里要注意,如果第一步和第二步得到的数是一位数,那么要在前面加个0。
如:402×201=(4×2)…(4×1)+(2×2)…2×1=8…8…2=8…08…02=80802.
如:302×102=3…8…4=30804.
这里还要注意就是如果第二步得到的数是三位数,那么就要向前面进位。
如:908×508=(9×5)…(9×8)+(8×5)…(8×8)=45…112…64=(45+1)…12…54=461254.
因此,只要碰到十位数是0的两个三位数相乘都可以用上面的这个速算方法,比传统方法算会快很多,而且也不容易出错。
十位数是1的两位数相乘的速算方法
十几与十几相乘的速算方法,如:13×12。
速算方法:将两个十位数上的数字相乘写在最终答案的百位数上,即1×1=1;将两个个位数上的数字相加写在最终答案的十位数上,即3+2=5;将两个个位数上的数字相乘写在最终答案的个位数上,即3×2=6;连起来就是13×12=156。
如:17×11=(1×1)…(7+1)…(7×1)=1…8…7=187.
14×12=1…6…8=168.
这里要注意,无论是两个个位数相加还是相乘,得到的数大于9都要向前进位。
如:16×18=(1×1)…(6+8)…(6×8)=1…14…48=(1+1)…(4+4)…8=288.
17×19=1…16…63=3…2…3=323.
《个位数互补、十位数相同的两个两位数相乘速算方法》
也就是个位数相同、十位数互补的两位数相乘的速算方法,如:48×68。
速算方法:将两个十位数上的数字相乘,即4×6=24,再加上个位数上的数字即24+8=32;然后将两个个位数上的数字相乘,即8×8=64;连起来就是48×68=3264.
如:27×87=(2×8+7)…7×7=23…49=2349.
39×79=(3×7+9)…9×9=30…81=3081.
这里要注意,如果两个个位数上的数字相乘得到的是一位数,那么要在前面加个0.
如:72×32=(7×3+2)…2×2=23…4=23…04=2304.
83×23=(8×2+3)…3×3=19…9=1909.
个位数是1的两位数相乘的速算方法,如:41×21。
速算方法:将十位数上的数字与十位数上的数字相乘写在最终答案的百位数上,即4×2=8;将十位数上的数字与十位数上的数字相加写在最终答案的十位数上,即4+2=6;将个位数上的数字与个位数上的数字相乘写在最终答案的个位数上,即1×1=1;连起来就是41×21=861.
如:51×31=(5×3)…(5+3)…(1×1)=15…8…1=1581.
这里要注意,如果第二步十位数上的数字与十位数上的数字相加大于9,就要向百位进1.
如:71×51=(7×5)…(7+5)…(1×1)=35…12…1=(35+1)…2…1=3621.
因此,以后只要碰到个位数为1的两个两位数相乘就可以用这个办法,只需要计算个位数与个位数的相乘和十以内的加法,就可以既快又准确的算出答案。
互补数就是两个数字相加等于10、100、1000等的数字,在这里的速算方法中,提到的互补数位数都是相同的,也就是两位与两位互补,三位与三位互补。
两个互补数相减的速算方法,如:73-27。
速算方法:将减数减去50再乘以2即为最终答案,也就是说将减数73-50=23,在乘以2,得46即为最终答案。
如:81-19=(81-50)x2=31×2=62。
63-37=(63-50)x2=26。
一个减数减去50,然后再乘以2是不是很好算?也不容易出错?比用传统方法在稿纸上运算是不是快很多了?
这里是两位数互补数相减,那么互补的三位数相减呢?也是一样的,只是将减去50变成减去500。
如:852-148=(852-500)x2=252×2=504。
746-254=(746-500)x2=492。
四位数也一样的变法,将50变成5000。
如:8426-1574=(8426-5000)x2=6852。
只要记住两点,一、这两数位数相同,二、这两数互补,那么都可以用这速算方法。
11这个数字在两位数中算是比较特殊的
如:11×26。方法是非常简单的。
首先,将与11相乘的任意两位数从中间分开,原十位数变为百位数,个位数还是个位数,然后将这任意两位数个位与十位相加放在中间。
如:11×26=2…(2+6)…6=2…8…6=286。
11×45=4…(4+5)…5=495。
是不是很简单?
这里还要注意如果这个任意两位数个位数与十位数相加大于9就要向百位进1。
如:11×68=6…(6+8)…8=6…14…8=(6+1)…4…8=748。
11×57=5…(5+7)…7=5…12…7=627。
个位数比十位数大1乘以9的速算方法
如:45×9。将代表个位数5的左手小拇指弯下来,弯下来的手指左边剩4根手指记做4,弯下来的手指记做0,弯下来的手指右边剩5根手指记做5,合起来就是405,也就是45×9=405。
67×9。将代表个位数7的右手无名指弯下来,弯下来的手指左边剩6根手指记做6,弯下来的手指记做0,弯下来的手指右边剩3根手指记做3,合起来就是603,也
⑻ 两位数乘两位数的速算法
两位数的乘法是一般是小学四年级以后就要学会的一种基础数学计算方法,也是今后学习数学必不可少的内容。对于数学运算来说,学会两位数的乘法速算技巧,对于提高数学运算效率、提高考试成绩具有重要的帮助。两位数乘两位数的速算法有头乘头,尾加尾,尾乘尾;一个头加1后,头乘头,尾乘尾;头互补,尾相同;一个头加1后,头乘头,尾乘尾。
1、头乘头,尾加尾,尾乘尾:这种算法是在十几乘十几的时候可以直接使用,但是一定要注意,个位相乘的话,不够两位数的时候要用0来占位。
2、一个头加1后,头乘头,尾乘尾:这句话的意思就是头相同,尾互补,主要是首同末和十,也就是十位数完全相同,个位数相加的和刚好也等于10的时候可以直接使用。在两位数的乘法算式中,如果两个乘数的十位数是相同的,先将第一个乘数加上第二个乘数的个位数,然后尾数相加。
3、头乘头加尾,尾乘尾:这句话的意思就是头互补,尾相同,末同首和十,个位数完全相同,十位数刚好相加等于10 的时候则可以直接使用。如果两个乘数的个位数是相同的,把十位数部分进行一次相乘和相乘,尾数个位数部分再相乘这一点需要注意的是两数相同的各个位数之积为得数的后两位数,不足10的时候,在十位上补0就可以了。。
4、一个头加1后,头乘头,尾乘尾:第一个数乘数互补,另外一个乘数数字相同的时候使用,这一点也要注意一个知识点,那就是个位相乘,不够两位数的时候要用0来占位。
数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。数学速算法分为金华速算、魏德武速算、史丰收速算以及古人创造的“袖里吞金”四大类速算方法。
⑼ 乘法的巧算方法
举例:13x25
当我们看到这个算式的时候,绝大部分学生包括家长都是需要列竖式计算的,少部分学生可以口算得出答案,而往往口算要比列竖式快很多,这就是时间上的效率,如果我们还能保证正确率,那就是我们学习上的效率。
下面老师分享一下三年级两位数乘法的速算方法:
1、尾积为尾
2、内积+外积为中
3、头积为前
4、遇到进位往前加
这就是我们两位数乘以两位数的口诀。
我们来计算一下:
13的尾是3,,25的尾为5,尾积就是3x5=15,答案出现两位数就意味着有进位,15表示往前进1,而个位上的5就是这题答案的尾数。
内积指的是靠近乘号的两个自然数,13x25靠近乘号的是3和2,也就是内积=3x2=6,外积指的是远离乘号的两个自然数,当然就是1和5了,也就是外积=1x5=5,内积加外积为中,就是6+5=11,而十位上的1是进位,所以剩下个位上的1就要加上进位当本题答案的中间数。
头积就是两个数字开头的两个自然数,13x25中,头积=1x2=2,所以这个数的开头数字就是2加上进位1等于3.
我们就可以依次将数字确定,头数为3,中间数为2,尾数为5,答案就是325.
这种方法是两位数乘以两位数的通用方法,适合所有的两位数乘法计算。
除了这种通用计算方法,在两位数乘法中还有特殊数字的乘法速算。