首先谢谢邀请,
python中有的算法还是比较多的?
python之所以火是因为人工智能的发展,人工智能的发展离不开算法!
感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。
这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。
第 1章从数学建模到人工智能
1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分
第2章 Python快速入门
2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科学计算库NumPy
3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存
第4章常用科学计算模块快速入门
4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结
第6章Python数据存储
6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语
第7章Python数据分析
7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结
第8章自然语言处理
8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战
第9章从回归分析到算法基础
9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制
第10章 从K-Means聚类看算法调参
10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战
第11章 从决策树看算法升级
11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类
第12章 从朴素贝叶斯看算法多变193
12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战
第13章 从推荐系统看算法场景
13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结
第14章 从TensorFlow开启深度学习之旅
14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!
㈡ TAN算法的Python实现
贴贴颜色,反正喷喷的时间应该是可以的,但是我没有学过喷子,用c加加也可以。
㈢ python计算
5+5%4*2//3的运算顺序是先5%4,后*2,再//3,最后+5。
%是取余运算符,5除以4等于1余1。所以,5%4=1。
*是乘法运算符,1乘2等于2。所以,5%4*2=2。
//是整除运算符,2整除3等于0。所以,5%4*2//3=0。
+是加法运算符,5加0等于5。所以,5+5%4*2//3=5。
注:整除的意思是指两个数相除只取小数点前的的数。例如:33//12=2。因为33÷12=2……9
㈣ kmeans算法用Python怎么实现
最佳答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from numpy import *
import numpy as np
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(array(dataSet)[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
#create mat to assign data points, to a centroid, also holds SE of each point
clusterAssment = mat(zeros((m,2)))
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
#for each data point assign it to the closest centroid
for i in range(m):
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
def show(dataSet, k, centroids, clusterAssment):
from matplotlib import pyplot as plt
numSamples, dim = dataSet.shape
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
ax = plt.gca()
plt.grid()
plt.show()
或者直接下载sklearn库,使用现成的函数。
㈤ python包含什么算法
Python基础算法有哪些?
1.
冒泡排序:是一种简单直观的排序算法。重复地走访过要排序的数列,一次比较两个元素,如果顺序错误就交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该排序已经完成。
2.
插入排序:没有冒泡排序和选择排序那么粗暴,其原理最容易理解,插入排序是一种最简单直观的排序算法啊,它的工作原理是通过构建有序序列,对于未排序数据在已排序序列中从后向前排序,找到对应位置。
3.
希尔排序:也被叫做递减增量排序方法,是插入排序的改进版本。希尔排序是基于插入排序提出改进方法的排序算法,先将整个待排序的记录排序分割成为若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全记录进行依次直接插入排序。
4. 归并排序:是建立在归并操作上的一种有效的排序算法。该算法是采用分治法Divide and的一个非常典型的应用。
5. 快速排序:由东尼·霍尔所发展的一种排序算法。又是一种分而治之思想在排序算法上的典型应用,本质上快速排序应该算是冒泡排序基础上的递归分治法。
6.
堆排序:是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质,即子结点的键值或索引总是小于它的父结点。
7.
计算排序:其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中,作为一种线性时间复杂度的排序,计算排序要求输入的数据必须是具有确定范围的整数。
㈥ python中算法是干什么用的
可以做分类。通常是做文本分类。 在此基础上做邮件的垃圾邮件过滤。还有自动识别效果也不错。
这是一个常见的算法。而且用处挺多的。 在语言分析里常用。比如:我有一组文件,想自动分成不同的类别。 再比如我有一个文章,想根据内容,自动分锻落。再比如有很多新闻,可以自动按行业进行分类。
这个算法有自学习,也就是机器学习的扩展。所以可以让算法自动升级精度。开始50-70%,后来可以达到90%的分类精度。
㈦ python 算法有哪些比赛
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。简单来讲,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。包括这几类:
1.
选择排序算法:选择排序是一种简单直观的排序算法。原理:首先在未排序序列中找到最小或最大元素,存放到排序序列的起始位置;然后,再从剩余未排序元素中继续寻找最大最小元素,然后放到已排序序列的后面,以此类推直到所有元素均排序完毕。
2.
快速排序算法:快速排序的运行速度快于选择排序。原理:设要排序的数组为N,首先任意选取一个数据作为关键数据,然后将所有比它小的数放到它前面,所有比它大的数都放到它后面,这个过程称之为快速排序。
3. 二分查找算法:二分查找的输入是一个有序的列表,如果要查找的元素包含在一个有序列表中,二分查找可以返回其位置。
4.
广度优先搜索算法:属于一种图算法,图由节点和边组成。一个节点可以与多个节点连接,这些节点称为邻居。它可以解决两类问题:第一类是从节点A出发,在没有前往节点B的路径;第二类问题是从节点A出发,前往B节点的哪条路径最短。使用广度优先搜索算法的前提是图的边没有权值,即该算法只用于非加权图中,如果图的边有权值的话就应该使用狄克斯特拉算法来查找最短路径。
5.
贪婪算法:又叫做贪心算法,对于没有快速算法的问题,就只能选择近似算法,贪婪算法寻找局部最优解,并企图以这种方式获得全局最优解,它易于实现、运行速度快,是一种不错的近似算法。
㈧ python算法设计的步骤有三步分别是
1. 弄清楚题目的意思,列出题目的输入、输出、约束条件
其中又一道题目是这样的:“有一个mxn的矩阵,每一行从左到右是升序的,每一列从上到下是升序的。请实现一个函数,在矩阵中查找元素elem,找到则返回elem的位置。”题设只说了行和列是升序的,我在草稿纸上画了一个3x4的矩阵,里面的元素是1~12,于是我就想当然的认为矩阵的左上角是最小的元素,右下角是最大的元素。于是整个题目的思考方向就错了。
2. 思考怎样让算法的时间复杂度尽可能的小
继续以上面的题目为例子。可以有如下几种算法:
a. 遍历整个矩阵进行查找,那么复杂度为O(m*n);
b. 因为每一行是有序的,所以可以对每一行进行二分查找,复杂度为O(m*logn)。但是这样只用到了行有序的性质。
c. 网上查了一下,最优的算法是从矩阵的左下角开始,比较左下角的元素(假设为X)与elem的大小,如果elem比X大,那么X所在的那一列元素就都被排除了,因为X是该列中最大的了,比X还大,那么肯定比X上面的都大;如果elem比X小,那么X所在的那一行就可以排除了,因为X是这一行里最小的了,比X还小那么肯定比X右边的都小。每迭代一次,矩阵的尺寸就缩小一行或一列。复杂度为O(max(m,n))。
可以先从复杂度较高的实现方法入手,然后再考虑如何利用题目的特定条件来降低复杂度。
3. 编写伪代码或代码
㈨ python的算法怎么学
和别的语言一样学啊,只是实现方法不同。
推荐书籍:《数据结构及算法 Python实现》,北大裘教授写的
推荐教程:刘江的Python教程
㈩ python算法有用吗
有很多人说,学编程算法有用吗?
学算法对于写程序来说非常重要。如果不打算进行算法相关的研究,你可以不学算法的证明等等,可必需得学会算法本身描述的操作、它
的适用场景与局限、它解决的问题的抽象模型等。也就是说,你可以不知道它是咋来的,但你必需会用。
而且算法在程序里普遍存在。除了helloworld级的玩具程序,几乎任何稍复杂一点的程序都需要算法。听歌,很普遍吧,可你有没有想过
推荐歌曲是怎么弄的呢?是算法。上网,很普遍吧?那你知不知道你的数据包是怎么从无数的路径里找到最短的一条呢?还是算法。算法
在程序里存在的太普遍了,所以学好算法真的是太重要了。
推荐学习《Python教程》!