导航:首页 > 源码编译 > 蚁群算法进行图像识别

蚁群算法进行图像识别

发布时间:2022-12-19 04:46:49

㈠ 求教:蚁群算法选择最短路径问题

这个例子其实是当初数模比赛时用来完成碎片拼接的,但其所用到原理还是求解最短路径的原理。但这里的最短路径和数据结构中最短路径有一定的区别。在数据结构中,对于最短路径的求解常用的一般有Dijkstra算法与Floyd算法,但对于要求出一条经过所有的点的并且要求路径最短,这些算法还是有一定的局限性的。而蚁群算法则很好地满足了这些条件。话说回来,很想吐槽一下网络流传的一些蚁群算法的例子,当初学习这个时候,身边也没有相关的书籍,只好到网上找例子。网上关于这个算法源代码的常见的有2个版本,都是出自博客,但是在例子都代码是不完整的,缺失了一部分,但就是这样的例子,居然流传甚广,我很好奇那些转载这些源码的人是否真的有去学习过这些,去调试过。当然,我下面的例子也是无法直接编译通过的,因为涉及到图像读取处理等方面的东西,所以就只贴算法代码部分。但是对于这个问题蚁群算法有一个比较大的缺点,就是收敛很慢,不过对于数量小的路径,效果还是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%参数解释:%nt 路径所经过的点的个数;%nc_max 迭代的次数;%m 蚂蚁的个数;%st 起点序号;%sd 终点序号;%Alpha 信息素系数;�ta 启发因子系数;%Rho 蒸发系数;% Q 信息量;%gethead getend 是用来求距离矩阵的,可根据实际情况修改
% nt = 209;%碎片个数full = zeros(nt,nt);tic;%初始化距离矩阵for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%启发因子,取距离的倒数% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩阵% tabu = zeros(nt,nt);%禁忌矩阵,取蚂蚁数量和碎片数量一致,以减少迭代次数nc =1;%初始化迭代次数;rbest=zeros(nc_max,nt);%各代最佳路线rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路线的长度pathlen = 0;%临时记录每代最佳路线长度stime = 1;%记录代数进度for i = 1:nc_max % 代数循环 delta_tau=zeros(nt,nt);%初始化改变量 stime for t = 1:m % 对蚂蚁群体的循环, tabu=zeros(1,nt);%禁忌向量,标记已访问的碎片,初试值设为0,访问之后则变为1; viseted = zeros(1,nt);%记录已访问的元素的位置 tabu(st) = 1;%st为起点,在此表示为碎片矩阵的编号,因为已经将蚁群放在起点,故也应将禁忌向量和位置向量的状态进行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %记录了还没访问的图片编号 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %获取尚未访问的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %计算选择的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一张碎片的选择概率计算,p =(信息素^信息素系数)*(启发因子^启发因子系数) end pp=pp./(sum(pp));%归一化 pcum =cumsum(pp); psl = find(pcum >= rand);%轮盘赌法 to_visit= wv(psl(1)) ;%完成选点 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已访问碎片个数变化 vp =vp+1; end %路径变化信息 %对单个蚂蚁的路径进行统计 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞记录每个蚂蚁的路径,即碎片顺序;% msum(t) = sum1; %信息素变化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出现有的最新的最佳路径,即信息素最多的路径; stime =stime +1;end toc;

㈡ 蚁群算法原理及其应用的图书目录

第1章 绪论
1.1 引言
1.2 蚂蚁的生物学特征
1.3 蚁群算法的思想起源
1.4 蚁群算法的研究进展
1.5 本书的体系结构
1.6 本章 小结
参考文献
第2章 基本蚁群算法原理及其复杂度分析
2.1 引言
2.2 基本蚁群算法的原理
2.3 基本蚁群算法的系统学特征
2.4 基本蚁群算法的数学模型
2.5 基本蚁群算法的具体实现
2.6 基本蚁群算法的复杂度分析
2.7 基本蚁群算法的性能评价指标
2.8 本章 小结
参考文献
第3章 蚁群算法的收敛性研究
3.1 引言
3.2 图搜索蚂蚁系统(GBAS)的收敛性研究
3.3 一类改进蚁群算法的收敛性证明
3.4 GBAS/tdev和GBAS/tdlb的确定性收敛证明
3.5 基本蚁群算法的A.S.收敛性研究
3.6 一类分布式蚂蚁路由算法的收敛性研究
3.7 基于分支路由和Wiener过程的蚁群算法收敛性证明
3.8 一种简单蚁群算法及其收敛性分析
3.9 遗传一蚁群算法的Markov收敛性分析
3.1 0一类广义蚁群算法(GACA)的收敛性分析
3.1 1本章 小结
参考文献
第4章 蚁群算法的实验分析及参数选择原则
4.1 引言
4.2 蚁群行为和参数对算法性能影响的实验分析
4.3 蚁群算法参数最优组合的“三步走”方法
4.4 本章 小结
参考文献
第5章 离散域蚁群算法的改进研究
5.1 引言
5.2 自适应蚁群算法
5.3 基于去交叉局部优化策略的蚁群算法
5.4 基于信息素扩散的蚁群算法
5.5 多态蚁群算法
5.6 基于模式学习的小窗口蚁群算法
5.7 基于混合行为的蚁群算法
5.8 带聚类处理的蚁群算法
5.9 基于云模型理论的蚁群算法
5.1 0具有感觉和知觉特征的蚁群算法
5.1 1具有随机扰动特性的蚁群算法
5.1 2基于信息熵的改进蚁群算法
5.1 3本章 小结
参考文献
第6章 连续域蚁群算法的改进研究
6.1 引言
6.2 基于网格划分策略的连续域蚁群算法
6.3 基于信息量分布函数的连续域蚁群算法
6.4 连续域优化问题的自适应蚁群算法
6.5 基于交叉变异操作的连续域蚁群算法
6.6 嵌入确定性搜索的连续域蚁群算法
6.7 基于密集非递阶的连续交互式蚁群算法(cIACA)
6.8 多目标优化问题的连续域蚁群算法
6.9 复杂多阶段连续决策问题的动态窗口蚁群算法
6.1 0本章 小结
参考文献
第7章 蚁群算法的典型应用
7.1 引言
7.2 车间作业调度问题
7.3 网络路由问题
7.4 车辆路径问题
7.5 机器人领域
7.6 电力系统
7.7 故障诊断
7.8 控制参数优化
7.9 系统辨识
7.1 0聚类分析
7.1 1数据挖掘
7.1 2图像处理
7.1 3航迹规划
7.1 4空战决策
7.1 5岩土工程
7.1 6化学工业
7.1 7生命科学
7.1 8布局优化
7.1 9本章 小结
参考文献
第8章 蚁群算法的硬件实现
8.1 引言
8.2 仿生硬件概述
8.3 基于FPGA的蚁群算法硬件实现
8.4 基于蚁群算法和遗传算法动态融合的软硬件划分
8.5 本章 小结
参考文献
第9章 蚁群算法同其他仿生优化算法的比较与融合
9.1 引言
9.2 其他几种仿生优化算法的基本原理
9.3 蚁群算法与其他仿生优化算法的异同比较
9.4 蚁群算法与遗传算法的融合
9.5 蚁群算法与人工神经网络的融合
9.6 蚁群算法与微粒群算法的融合
9.7 蚁群算法与人工免疫算法的融合
9.8 本章 小结
参考文献
第10章 展望
10.1 引言
10.2 蚁群算法的模型改进
10.3 蚁群算法的理论分析
10.4 蚁群算法的并行实现
10.5 蚁群算法的应用领域
10.6 蚁群算法的硬件实现
10.7 蚁群算法的智能融合
10.8 本章 小结
参考文献
附录A基本蚁群算法程序
A.1 C语言版
A.2 Matlab语言版
A.3 VisualBasic语言版
附录B相关网站
附录C基本术语(中英文对照)及缩略语
附录D(词一首)鹧鸪天蚁群算法

㈢ 传统经典断层识别实战(二)——方差体和蚂蚁追踪(附软件)

地震方差体属性的基础是误差分析,主要通过相邻道地震信号的相似度属性描述地质构造资料。其在地震道特征描述以及储集层展布等方面已经取得了良好的应用效果。因此,地震方差体属性可以应用在构造解释中,由于对构造解释的精度要求越来越高,基于地震方差体属性能够表述出地质构造间不连续的断层与褶皱关系。

实际地层的裂缝会导致地震数据体中对应位置采样点与周围区域的采样点出现振幅特征异常,此时通过计算一定范围区域内的采样点之间的方差值来凸显出裂缝点以识别出裂缝。如图,窗口内有 n 道地震数据,以窗口中间的采样点为种子点。计算该点方差的具体步骤如下:1)取窗口内上下各一半的采样点,先求出窗口内 n 道地震数据中每一道所有采样点的平均振幅值;2)计算每个采样点与同一时刻 n 道数据中的振幅值和振幅平均值的方差的和;3)乘上加权系数并归一化获得该点的方差值。移动窗口,迭代步骤 1、2、3 得到整个工区数据体每一个采样点的方差值,得到方差体。

由图可以得到方差体属性计算公式:

常用的体属性有相干体、方差体、曲率体属性。各种体属性的利用,主要利用其沿地层的层位属性。每种软件的各种算法不一致,同一种属性结果也不尽相同。由下图可看出, 使用Geoframe软件的方差属性、VVA软件的方差属性和相干属性效果都较好,陷落柱异常反映清楚,无论是较大的,还是较小都有显示,在地层顺层切片上表现为圆形或半圆形圈闭。VVA软件的曲率属性效果较差,虽然陷落柱在其上都有显示,但干扰较大,没有其他几种属性反映得明显、直观。

蚂蚁体追踪技术基于蚁群算法实现对断裂的追踪和识别。该算法原理为模拟蚂蚁在食物与巢穴之间根据可吸引蚂蚁的信息素浓度寻求最短路径。在地震数据中,“蚂蚁”根据振幅及相位之间的差异,沿着可能的断层和裂缝移动完成对二者的刻画。

21世纪初,蚂蚁追踪技术开始广泛应用于断裂系统解释中,目前该技术成功的应用到石油地震资料精细解释中,并取得了不错的效果。蚂蚁追踪解释技术具有快速、直观、高精度、客观等优点。为了使小断层地震属性识别更明显,解释精度更高。采用了在构造导向滤波基础上,再对数据进行蚂蚁追踪计算,最后根据属性优选提取敏感属性。 即通过“蚂蚁”+属性融合(包括“蚂蚁”+方差属性、“蚂蚁”+相干属性、“蚂蚁”+朗伯反射属性、“蚂蚁”+倾角属性、“蚂蚁”+瞬时振幅属性以及“蚂蚁”+瞬时频率属性),然后优选其中的敏感属性用于精细构造解释。

与相干属性相比(如图),蚂蚁体属性的优点是凸显了断裂线状构造特征,去除了与断裂无关的信息,提高了断裂解释 精度。缺点是平面预测结果往往过于杂乱,无规律。原因之一是控制蚂蚁追踪结果的参数太多,调节困难。

蚂蚁体追踪技术是基于叠后地震数据运算的,虽然其精度比相干等属性高,但也只适用于对小断层和大尺度裂缝的预测。可预测裂缝发育的方向,但难以定量化表征裂缝发育密度。

接下来,我们使用真实的数据来演示方差体和蚂蚁追踪的操作方法。

先讲一下选用数据的情况。这次我们用的是1996年新西兰塔拉纳基盆地叠前数据。这个数据在很多专家的论文中都出现过。数据概貌是这样的:

数据的尺寸是:287*735*1252。

接下来,我们使用Petrel这款软件来进行处理。

1.新建工程和导入数据

选择New project,然后在Home Folder栏,选择 new seismic main folder。

在树形结构seismic右键点击-new seismic survey,这样就建好了工程。

右键点击Survery 1,选择Import (on selection),选择数据体Kerry3D.segy,在弹出的参数框中直接点击OK,就加载了数据。

通过新建一个3D的窗口,可以查看数据概貌。

2.方差体

(1)做Realized。

在地震信号右击选择Realized…。在对话框中点击Realize后关闭窗口,这样就对原始数据进行了简化,减少了一些细节的信号。

(2)方差体

点击Realized的数据体,在seismic Interpretation点击volume attributes(体属性)进行配置:

结果就是这样的:

如果觉得干扰较多,还可以对数据体先进行平滑处理,再做方差体。平滑处理是选择这样的参数:

最后处理的结果是这样的:

3.蚂蚁追踪

选择刚才处理后的方差体数据,在seismic Interpretation点击volume attributes(体属性)进行配置:

处理后的结果是这样的。相比方差体,断层识别分辨率进一步提高。

蚂蚁追踪也可以在不同的数据体结果上处理,大家可以自己多尝试。

蚂蚁追踪的参数配置方法比较多。

一是在参数配置中,可以选择主动或被动。一般识别大断层用被动,小断层用主动。还可以先做主动,然后再叠加被动。这样就可以去掉很多无效识别结果。

二是过滤不追踪的信号。其中的圈代表断层的方位,dip是倾角,azimuth是方位。涂黑的部分就是不追踪的断层,比如最里层代表水平的断层,一般就不会追踪。

大家可以根据工区的实际情况,选择不追踪的断层。

比如断层主要看南北方向的,就把东西方向的涂黑,一般不涂黑外层(因为南北向的倾角较大)。如下图:



以上就是今天的课程。这节课讲解了现在比较常用的两种断层自动识别的方法,包括了原理和实战案例操作。如果大家对软件比较感兴趣或遇到什么问题都可以联系我交流。再见。

扩展阅读:

怎样轻松入门地震勘探研究:先从地震数据处理开始

如何从0开启地震深度学习科研之路

㈣ 要学习模式识别、神经网络、遗传算法、蚁群算法等等人工智能算法需要哪些数学知识

模式识别需要非常好的概率论,数理统计;另外会用到少量矩阵代数,随机过程和高数中的一些运算,当然是比较基础的;如果要深入的话恐怕需要学泛函,但是一般情况下不需要达到这种深度。神经网络,遗传算法等智能算法在模式识别有非常重要的应用,但是一般不需要学习计算机学科的人工智能,我们控制有一个交叉学科叫做智能控制是讲这些的,智能控制不需要什么基础,有中学数学的集合和对空间有一点点的了解就足够了,模糊数学的基础是包含在这门学科里的。

㈤ 智慧工地中的图像传感技术的应用进展

本文内容来自以下文章:

杨晓娇,于忠,冮军.智慧工地中的图像传感技术的应用进展[J].四川建筑,2021,41(S1):41-44.

摘要:文章对智慧工地中的图像传感技术的发展历程、以及图像技术、视频技术、激光雷达点云技术在建筑工地中的应用作介绍,并介绍了智能算法在图像处理技术领域的发展应用。最后提出为了更好地满足施工监管的需求,图像技术可以通过视频技术、激光雷达点云技术在时间、空间上进行交叉验证,以提高图像识别的准确性。在智能算法与图像耦合技术方面应结合三维技术形成更加准确地实时反馈信号指导工程施工。

关键词:图像传感技术; 视频技术; 激光雷达点云技术; 智能算法

智慧工地和智慧建筑的兴起与当今智能化、信息化的发展有着紧密的联系。随着我国城镇化进程的加快,建筑施工过程日益复杂,施工现场安全问题,如劳务人员安全帽和安全绳佩戴、施工现场临时用电混乱、临边防护等问题,也日益凸显出来,使得传统施工安全监管技术已经无法满足目前现场施工安全的要求。借助计算机和人工智能技术的快速发展,图像传感技术凭借 处理精度高、灵活性强、再现性好、适用面广等特点 成功应用于建筑施工安全管理等过程,为项目管理人员提供施工现场的安全隐患、施工动态及进度的实时反馈,提高了建筑施工安全管理效率。

进入21世纪,图像传感技术的应用范围被逐渐拓宽,甚至在某些领域已经取得突破。然而,对计算机计算速度、存储容量要求较高,图像处理使用频带较宽、以及在成像、传输方面还有一定的技术难度等因素,制约了图像传感技术的进一步发展。

目前,智慧工地系统中包含了大量的各类传感器和核心的数据实时处理技术,也由此带来了大量的数据获取、传递和处理。随着智能技术的发展,视频图像信息在建筑信息数据中的占比越来越大,利用图像传感技术对建筑施工进度、人员安全带和防护栅栏等安全装置状态识别、工程质量评价以及施工现场扬尘监测等过程进行实时反馈,实现建筑施工过程中的信息识别、安全监管、决策分析等功能,使得图像传感技术成为建筑施工管理过程中的重要技术手段之一。

1 图像及视频传感技术在智慧工地中的应用

1.1 图像技术在建筑工地中的应用

图像技术总体上可以分为 图像分析、图像重建和图像的像质改善 三大部分,在建筑施工中图像技术一般用于图像分析,如人脸识别、安全帽/绳识别、火灾识别、混凝土结构监控等。

1. 2 视频技术在建筑工地的应用

建筑工地是一个复杂庞大的区域,利用视频技术对建筑物内部各个位置情况进行监管,对建筑施工现场安全管理进行实时监控。从现有的研究和应用案例来看,建筑工地对视频监控的需求主要集中在: 地基基础、地面施工、高层作业以及文明施工检查 等阶段。其中, 安全问题 是各个阶段最突出的问题之一,利用视频技术对施工现场的深基坑、高边坡支护安全、模板工程安全、临边洞口防护、脚手架搭设安全等过程进行监管,既减轻了监管人员的工作强度,又加强了建设行政主管部门以及监管机构的调控监控力度,提高了工作效率。

1.3 激光雷达点云技术在建筑工地的应用

近年来,利用激光雷达技术处理大规模的地理空间数据,发展了计算机视觉、计算机图形学。从有关于建筑重建、图像以及激光雷达建模的文献中发现,其中很大一部分内容致力于基于图像的方法进行 建筑重建 。激光雷达利用点云成型技术能快速获取大范围区域表面采样点的三维空间数据,正是由于其在建模工作上的高效性,因而在 建筑规划、建筑施工以及文物保护等 方面起到了重要作用。

2 智能算法对于图像技术在智慧建筑领域发展的影响

2.1 智能算法在图像处理技术中的发展

智能算法自提出以来就引起了国内外众多学者的广泛关注,经过多年的发展和创造,智能优化算法已成功应用在国民经济的各个领域,为生产生活中的许多复杂问题提供了一个高效可行的解决方案,成为了学术领域中一个重要的研究方向。其中比较经典的智能优化算法有: 遗传算法(GA)、蚁群算法(ACO)、粒子群算法(PSO)、差分进化算法(DE)、混合蛙跳算法(SFLA)、人工蜂群算法 等。 在图像处理技术上蚁群算法和粒子群算法是最常用的算法

总的来说,智能算法用于图像处理技术的优化具有两个方面的重要作用。 一是基于大数据信息平台的信息汇总数据智能处理分析,引导图像处理技术的优化和发展; 二是基于大数据技术对于数字信号的处理架构以及模型优化,能够有效辅助现有图像处理技术,实现图像处理技术的快速升级。

2.2 智能算法和图像耦合技术对传感建模方法的改进

利用 智能算法与图像耦合技术 处理施工过程中火灾识别、污染识别、劳务人员安全识别等问题具有高速、便捷等特点。智能算法与图像之间的耦合技术主要利用图像本身具有的张量结构,且张量结构具有良好的表达能力和计算特性,因此可以利用智能算法对张量结构进行分解并快速而高质量对图像进行压缩和提取相关特征信息,从而可以利用获取的信息进行快速的传感建模。施工现场的大气污染防治作为建筑工地的重要工作之一,利用图像处理技术对施工过程中的扬尘、裸土覆盖等问题进行智能识别,通过智能算法与图像之间的耦合技术对施工现场的扬尘、烟雾、裸土等信息进行提取传感建模,实现快速识别、抓取、处理等功能,并生成相应的数学模型对施工过程进行预测、评估等,指导施工现场管理。

然而,智能算法与图像耦合技术的传感建模方法仅仅是获取图像中的 二维数据信息 进行快速建模,对施工现场出现的问题作出的响应更多只是简单提取建模、分析、以及预警等,很难进一步提高精度。因此, 智能算法与图像之间的耦合技术应结合三维技术进行更加精确的数据信息提取,从而形成精度更高的实时反馈、预测模型、评价模型等指导现场施工实现精确识别、预测告警、以及深度治理等功能

3 总结和展望

本文主要对图像传感技术的发展历程,以及 图像技术、视频技术、激光雷达点云技术 在建筑中的应用进行了概述,指出随着建筑施工过程的日益复杂,建筑体量增大,仅仅依靠图像识别技术对劳务人员、安全帽佩戴、烟雾情况进行识别已经无法满足工地现场管理的要求,因此目前图像技术应与视频技术相结合,以提高图像识别的准确性。并提出利用激光雷达点云与视频图像技术对施工过程中的扬尘、裸土识别等进行交叉验证,以提高识别精度,实现建筑施工污染源的精准定位、智能预测、深度治理。文中还对智能算法、以及其在图像处理技术领域的应用进行了介绍,提出智能算法与图像耦合技术对于传感建模方法应结合三维技术进行更加精确的数据信息提取,从而形成精度更高的实时反馈、各类模型等指导现场工地施工。

㈥ 什么是智能优化算法

群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:

Step1:设置参数,初始化种群;

Step2:生成一组解,计算其适应值;

Step3:由个体最有适应着,通过比较得到群体最优适应值;

Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;

各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。

(6)蚁群算法进行图像识别扩展阅读

优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。

优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。

㈦ 蚁群算法的内容

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

㈧ 蚁群算法求函数最大值

这里使用蚁群算法求函数的最大值,函数是:

步骤如下:

下面是主函数:

程序运行结果绘图如下,其中蓝色点为第一代蚁群,红色为最后一代蚁群:

函数说明如下:

下面计算函数的状态转移概率,进行局部搜索和全局搜索:

之后约束边界:

最后进行选择:

初始化蚁群函数:

计算目标函数值函数:

绘制函数图像函数:

㈨ 人工智能医学影像能识别哪些图像类型

随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像分析和处理要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多Agent技术等;涉及MR图像、超声图像、PET图像、CT图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。关键词:医学影像;医学图像处理;人工智能

阅读全文

与蚁群算法进行图像识别相关的资料

热点内容
华为adb命令行刷机 浏览:963
人像摄影pdf 浏览:755
解压文件密码怎样重新设置手机 浏览:999
高考指南pdf 浏览:693
爬虫python数据存储 浏览:240
u盘怎么取消加密 浏览:429
567除以98的简便算法 浏览:340
pdf手机如何解压 浏览:15
python描述器 浏览:60
战地联盟3解压密码 浏览:805
s型命令 浏览:25
php年薪5年 浏览:71
如何上网上设个人加密账户 浏览:44
linux打开ssh服务 浏览:78
微信位置可以加密吗 浏览:470
算法蛮力法 浏览:438
随机排练命令 浏览:147
python多进程并发 浏览:41
安卓软件安装如何躲避安全检测 浏览:647
奇幻潮翡翠台源码百度云盘 浏览:187