A. 贪心算法几个经典例子
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
贪心算法是很常见的算法之一,这是由于它简单易行,构造贪心策略简单。但是,它需要证明后才能真正运用到题目的算法中。一般来说,贪心算法的证明围绕着整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于本例题中的3种贪心策略,都无法成立,即无法被证明。
B. Pascal贪心算法,求解答!
这道题用贪心不大好吧
记得老师以前说过
这种题用DP
这道题是最简单的01背包
我给你发个资料
那个,发不了啊,上传失败
你给我qq吧
P01: 01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。
优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
P02: 完全背包问题
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。
一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。
转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。
更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..Vf[v]=max{f[v],f[v-c[i]]+w[i]};
你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。
这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。
总结
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
P03: 多重背包问题
题目
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本算法
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。
转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。
方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。
分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。
这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑logn[i])的01背包问题,是很大的改进。
O(VN)的算法
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。
小结
这里我们看到了将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。
P04: 混合三种背包问题
问题
如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?
01背包与完全背包的混合
考虑到在P01和P02中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:
for i=1..N
if 第i件物品是01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品是完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};
再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。
小结
有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
P05: 二维费用的背包问题
问题
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。
算法
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。
物品总个数的限制
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。
另外,如果要求“恰取M件物品”,则在f[0..V][M]范围内寻找答案。
小结
事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。
P06: 分组的背包问题
问题
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
算法
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}。
使用一维数组的伪代码如下:
for 所有的组k
for 所有的i属于组k
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]}
另外,显然可以对每组中的物品应用P02中“一个简单有效的优化”。
小结
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。
P07: 有依赖的背包问题
简化的问题
这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。
算法
这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。
按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2^n+1个,为指数级。)
考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。
再考虑P06中的一句话: 可以对每组中的物品应用P02中“一个简单有效的优化”。这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次01背包,得到费用依次为0..V-c[i]所有这些值时相应的最大价值f'[0..V-c[i]]。那么这个主件及它的附件集合相当于V-c[i]+1个物品的物品组,其中费用为c[i]+k的物品的价值为f'[k]+w[i]。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次01背包后,将主件i转化为 V-c[i]+1个物品的物品组,就可以直接应用P06的算法解决问题了。
更一般的问题
更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。
解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01 背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。
事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P08后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。
小结
NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。
我想说:失败不是什么丢人的事情,从失败中全无收获才是。
P08: 泛化物品
定义
考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。
更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。
这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。
一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c<=n,其它情况函数值均为0。
一个物品组可以看作一个泛化物品h。对于一个0..V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P07中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。
泛化物品的和
如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0..V的每一个整数v,可以求得费用v分配到h和l中的最大价值f(v)。也即f(v)=max{h(k)+l(v-k)|0<=k<=v}。可以看到,f也是一个由泛化物品h和l决定的定义域为0..V的函数,也就是说,f是一个由泛化物品h和 l决定的泛化物品。
由此可以定义泛化物品的和:h、l都是泛化物品,若泛化物品f满足f(v)=max{h(k)+l(v-k)|0<=k<=v},则称f是h与l的和,即f=h+l。这个运算的时间复杂度是O(V^2)。
泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。
背包问题的泛化物品
一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为v,将物品装入背包可得到的最大价值是多少,这可以认为是定义在非负整数集上的一件泛化物品。这个泛化物品——或者说问题所对应的一个定义域为非负整数的函数——包含了关于问题本身的高度浓缩的信息。一般而言,求得这个泛化物品的一个子域(例如0..V)的值之后,就可以根据这个函数的取值得到背包问题的最终答案。
综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。
小结
本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的 Scheme 语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。
我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。
P09: 背包问题问法的变化
以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。
例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。
还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。
C. PASCAL算法知识题~~高分~紧急~
6.1 穷举策略的概念
所谓枚举法,指的是从可能的解的集合中一一枚举各元素, 用题目给定的检验条件判定哪些是无用的,哪些是有用的。能使命题成立,即为其解。
有些问题可以用循环语句和条件语句直接求解,有些问题用循环求解时循环次数太多,无法编写程序,怎么办?下面是用“千军万马过独木桥,适者存”的方式实现穷举策略的。
6.2 典型例题与习题
例1.将2n个0和2n个1,排成一圈。从任一个位置开始,每次按逆时针的方向以长度为n+1的单位进行数二进制数。要求给出一种排法,用上面的方法产生出来的2n+1个二进制数都不相同。
例如,当n=2时,即22个0和22个1排成如下一圈:
比如,从A位置开始,逆时针方向取三个数000,然后再从B位置上开始取三个数001,接着从C开始取三个数010,...可以得到000,001,010,101,011,111,110,100共8个二进制数且都不相同。
程序说明:
以n=4为例,即有16个0,16个1,数组a用以记录32个0,1的排法,数组b统计二进制数出现的可能性。
程序清单
PROGRAM NOI00;
VAR
A :ARRAY[1..36] OF 0..1
B :ARRAY[0..31] OF INTEGER;
I,J,K,S,P:INTEGER;
BEGIN
FOR I:=1 TO 36 DO A[I]:=0;
FOR I:=28 TO 32 DO A[I]:=1;
P:=1; A[6]:=1;
WHILE (P=1) DO
BEGIN
J:=27
WHILE A[J]=1 DO J:=J-1;
( A[J]:=1 )
FOR I:=J+1 TO 27 DO ( A[i]:=0 )
FOR I:=0 TO 31 DO B[I]:=0;
FOR I:=1 TO 32 DO
BEGIN
( S:=0)
FOR K:=I TO I+4 DO S:=S*2+A[k];
( B[S]:=1 )
END;
S:=0;
FOR I:=0 TO 31 DO S:=S+B[I];
IF ( S=32 ) THEN P:=0
END;
FOR I:=1 TO 32 DO FOR J:=I TO I+4 DO WRITE(A[J]);
WRITELN
END.
例2:在A、B两个城市之间设有N个路站(如下图中的S1,且N<100),城市与路站之间、路站和路站之间各有若干条路段(各路段数<=20,且每条路段上的距离均为一个整数)。
A,B的一条通路是指:从A出发,可经过任一路段到达S1,再从S1出发经过任一路段,…最后到达B。通路上路段距离之和称为通路距离(最大距离<=1000)。当所有的路段距离给出之后,求出所有不同距离的通路个数(相同距离仅记一次)。
例如:下图所示是当N=1时的情况:
从A到B的通路条数为6,但因其中通路5+5=4+6,所以满足条件的不同距离的通路条数为5。
算法说明:本题采用穷举算法。
数据结构:N:记录A,B间路站的个数
数组D[I,0]记录第I-1个到第I路站间路段的个数
D[I,1],D[I,2],…记录每个路段距离
数组G记录可取到的距离
程序清单:
program CHU7_6;
var i,j,n,s:integer;
b:array[0..100] of integer;
d:array[0..100,0..20] of integer;
g:array[0..1000] of 0..1;
begin
readln(n);
for i:=1 to n+1 do
begin
readln(d[i,0]);
for j:=1 to d[i,0] do read(d[i,j]);
end;
d[0,0]:=1;
for i:=1 to n+1 do b[i]:=1;
b[0]:=0;
for i:=1 to 1000 do g[i]:=0;
while b[0]<>1 do
begin
s:=0;
for i:=1 to n+1 do
s:= s+d[i,b[i]];
g[s]:=1;j:=n+1;
while b[j]=d[j,0] do j:=j-1;
b[j]:=b[j]+1;
for i:=j+1 to n+1 do b[i]:=1;
end;
s:=0;
for i:=1 to 1000 do
s:=s+g[i];
writeln(s);readln;
end.
2.1 递归的概念
1.概念
一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).
如:
procere a;
begin
.
.
.
a;
.
.
.
end;
这种方式是直接调用.
又如:
procere b; procere c;
begin begin
. .
. .
. .
c; b;
. .
. .
. .
end; end;
这种方式是间接调用.
例1计算n!可用递归公式如下:
1 当 n=0 时
fac(n)={n*fac(n-1) 当n>0时
可编写程序如下:
program fac2;
var
n:integer;
function fac(n:integer):real;
begin
if n=0 then fac:=1 else fac:=n*fac(n-1)
end;
begin
write('n=');readln(n);
writeln('fac(',n,')=',fac(n):6:0);
end.
例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.
设n阶台阶的走法数为f(n)
显然有
1 n=1
f(n)={2 n=2
f(n-1)+f(n-2) n>2
可编程序如下:
program louti;
var n:integer;
function f(x:integer):integer;
begin
if x=1 then f:=1 else
if x=2 then f:=2 else f:=f(x-1)+f(x-2);
end;
begin
write('n=');read(n);
writeln('f(',n,')=',f(n))
end.
2.2 如何设计递归算法
1.确定递归公式
2.确定边界(终了)条件
练习:
用递归的方法完成下列问题
1.求数组中的最大数
2.1+2+3+...+n
3.求n个整数的积
4.求n个整数的平均值
5.求n个自然数的最大公约数与最小公倍数
6.有一对雌雄兔,每两个月就繁殖雌雄各一对兔子.问n个月后共有多少对兔子?
7.已知:数列1,1,2,4,7,13,24,44,...求数列的第 n项.
2.3典型例题
例3 梵塔问题
如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子
从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上
不能出现大盘压小盘.找出移动次数最小的方案.
程序如下:
program fanta;
var
n:integer;
procere move(n,a,b,c:integer);
begin
if n=1 then writeln(a,'--->',c)
else begin
move(n-1,a,c,b);
writeln(a,'--->',c);
move(n-1,b,a,c);
end;
end;
begin
write('Enter n=');
read(n);
move(n,1,2,3);
end.
例4 快速排序
快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.
程序如下:
program kspv;
const n=7;
type
arr=array[1..n] of integer;
var
a:arr;
i:integer;
procere quicksort(var b:arr; s,t:integer);
var i,j,x,t1:integer;
begin
i:=s;j:=t;x:=b[i];
repeat
while (b[j]>=x) and (j>i) do j:=j-1;
if j>i then begin t1:=b[i]; b[i]:=b[j];b[j]:=t1;end;
while (b[i]<=x) and (i<j) do i:=i+1;
if i<j then begin t1:=b[j];b[j]:=b[i];b[i]:=t1; end
until i=j;
b[i]:=x;
i:=i+1;j:=j-1;
if s<j then quicksort(b,s,j);
if i<t then quicksort(b,i,t);
end;
begin
write('input data:');
for i:=1 to n do read(a[i]);
writeln;
quicksort(a,1,n);
write('output data:');
for i:=1 to n do write(a[i]:6);
writeln;
end.
3.1 回溯的设计
1.用栈保存好前进中的某些状态.
2.制定好约束条件
例1由键盘上输入任意n个符号;输出它的全排列.
program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;
end;
begin
input;
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.
例2.n个皇后问题:
program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
begin
k:=1;x[k]:=0;
while k>0 do
begin
x[k]:=x[k]+1;
while (x[k]<=n) and (not place(k)) do x[k]:=x[k]+1;
if x[k]>n then k:=k-1
else if k=n then print
else begin k:=k+1;x[k]:=0 end
end ;
end.
回溯算法的公式如下:
3.2 回溯算法的递归实现
由于回溯算法用一栈数组实现的,用到栈一般可用递归实现。
上述例1的递归方法实现如下:
program hh;
const n=4;
var i,k:integer;
x:array[1..n] of integer;
st:string[n];
t:string[n];
procere input;
var i:integer;
begin
write('Enter string=');readln(st);
t:=st;
end;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if x[i]=x[k] then
begin place:=false; break end ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(t[x[i]]);
writeln;readln;
end;
procere try(k:integer);
var i :integer;
begin
if k=n+1 then begin print;exit end;
for i:=1 to n do
begin
x[k]:=i;
if place(k) then try(k+1)
end
end;
begin
input;
try(1);
end.
例2:n皇后问题的递归算法如下:
程序1:
program hh;
const n=8;
var i,j,k:integer;
x:array[1..n] of integer;
function place(k:integer):boolean;
var i:integer;
begin
place:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then
place:=false ;
end;
procere print;
var i:integer;
begin
for i:=1 to n do write(x[i]:4);
writeln;
end;
procere try(k:integer);
var i:integer;
begin
if k=n+1 then begin print; exit end;
for i:= 1 to n do
begin
x[k]:=i;
if place(k) then try(k+1);
end;
end ;
begin
try(1);
end.
程序2:
说明:当n=8 时有30条对角线分别用了l和r数组控制,
用c数组控制列.当(i,j)点放好皇后后相应的对角线和列都为false.递归程序如下:
program nhh;
const n=8;
var s,i:integer;
a:array[1..n] of byte;
c:array[1..n] of boolean;
l:array[1-n..n-1] of boolean;
r:array[2..2*n] of boolean;
procere output;
var i:integer;
begin
for i:=1 to n do write(a[i]:4);
inc(s);writeln(' total=',s);
end;
procere try(i:integer);
var j:integer;
begin
for j:=1 to n do
begin
if c[j] and l[i-j] and r[i+j] then
begin
a[i]:=j;c[j]:=false;l[i-j]:=false; r[i+j]:=false;
if i<n then try(i+1) else output;
c[j]:=true;l[i-j]:=true;r[i+j]:=true;
end;
end;
end;
begin
for i:=1 to n do c[i]:=true;
for i:=1-n to n-1 do l[i]:=true;
for i:=2 to 2*n do r[i]:=true;
s:=0;try(1);
writeln;
end.
7.1 贪心策略的定义
贪心策略是:指从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法。
其实,从“贪心策略”一词我们便可以看出,贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该题运用贪心策略可以得到最优解或较优解。
例1:在n行m列的正整数矩阵中,要求从每一行中选一个数,使得选出的n个数的和最大。
本题可用贪心策略:选n次,每一次选相应行中的最大值即可。
例2:在一个N×M的方格阵中,每一格子赋予一个数(即为权)。规定每次移动时只能向上或向右。现试找出一条路径,使其从左下角至右上角所经过的权之和最大。
本题用贪心策略不能得到最优解,我们以2×4的矩阵为例。 3 4 6
1 2 10
若按贪心策略求解,所得路径为:1,3,4,6;
若按动态规划法求解,所得路径为:1,2,10,6。
例3:设定有n台处理机p1,p2,......pn,和m个作业j1,j2,...jm,处理机可并行工作,作业未完成不能中断,作业ji在处理机上的处理时间为ti,求解最佳方案,使得完成m项工作的时间最短?
本题不能用贪心算法求解:理由是若n=3,m=6 各作业的时间分别是11 7 5 5 4 7
用贪心策略解(每次将作业加到最先空闲的机器上)time=15,用搜索策略最优时间应是14,但是贪心策略给我们提供了一个线索那就是每台处理上的时间不超过15,给搜索提供了方便。
总之:
1. 不能保证求得的最后解是最佳的;
2. 只能用来求某些最大或最小解问题;
3. 能确定某些问题的可行解的范围,特别是给搜索算法提供了依据。
7. 2 贪心策略的特点
贪心算法有什么样的特点呢?我认为,适用于贪心算法解决的问题应具有以下2个特点:
1、贪心选择性质:
所谓贪心选择性质是指应用同一规则f,将原问题变为一个相似的、但规模更小的子问题、而后的每一步都是当前看似最佳的选择。这种选择依赖于已做出的选择,但不依赖于未做出的选择。从全局来看,运用贪心策略解决的问题在程序的运行过程中无回溯过程。关于贪心选择性质,读者可在后文给出的贪心策略状态空间图中得到深刻地体会。
2、局部最优解:
我们通过特点2向大家介绍了贪心策略的数学描述。由于运用贪心策略解题在每一次都取得了最优解,但能够保证局部最优解得不一定是贪心算法。如大家所熟悉得动态规划算法就可以满足局部最优解,但贪心策略比动态规划时间效率更高站用内存更少,编写程序更简单。
7.3 典型例题与习题
例4:背包问题:
有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。 物品
A
B
C
D
E
F
G
重量
35
30
60
50
40
10
25
价值
10
40
30
50
35
40
30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占空间最小的物品装入是否能得到最优解?
(3)每次选取单位容量价值最大的物品,成为解本题的策略。
程序如下:
program beibao;
const
m=150;
n=7;
var
xu:integer;
i,j:integer;
goods:array[1..n,0..2] of integer;
ok:array[1..n,1..2] of real;
procere init;
var
i:integer;
begin
xu:=m;
for i:=1 to n do
begin
write('Enter the price and weight of the ',i,'th goods:');
goods[i,0]:=i;
read(goods[i,1],goods[i,2]);
readln;
ok[i,1]:=0; ok[i,2]:=0;
end;
end;
procere make;
var
bi:array[1..n] of real;
i,j:integer;
temp1,temp2,temp0:integer;
begin
for i:=1 to n do
bi[i]:=goods[i,1]/goods[i,2];
for i:=1 to n-1 do
for j:=i+1 to n do
begin
if bi[i]<bi[j] then begin
temp0:=goods[i,0]; temp1:=goods[i,1]; temp2:=goods[i,2];
goods[i,0]:=goods[j,0]; goods[i,1]:=goods[j,1]; goods[i,2]:=goods[j,2];
goods[j,0]:=temp0; goods[j,1]:=temp1; goods[j,2]:=temp2;
end;
end;
end;
begin
init;
make;
for i:=1 to 7 do
begin
if goods[i,2]>xu then break;
ok[i,1]:=goods[i,0]; ok[i,2]:=1;
xu:=xu-goods[i,2];
end;
j:=i;
if i<=n then
begin
ok[i,1]:=goods[i,0];
ok[i,2]:=xu/goods[i,2];
end;
for i:=1 to j do
writeln(ok[i,1]:1:0,':',ok[i,2]*goods[i,2]:2:1);
end.
例5:旅行家的预算问题:
一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市,给定两个城市间的距离d1,汽车油箱的容量是c,每升汽油能行驶的距离d2,出发时每升汽油的价格是p,沿途加油站数为n(可为0),油站i离出发点的距离是di,每升汽油的价格是pi。
计算结果四舍五入保留小数点后两位,若无法到达目的地输出“No answer"
若输入:
d1=275.6 c=11.9 d2=27.4 p=8 n=2
d[1]=102 p[1]=2.9
d[2]=220 p[2]=2.2
output
26.95
本问题的贪心策略是:找下一个较便宜的油站,根据距离确定加满、不加、加到刚好到该站。
程序如下:
program jiayou;
const maxn=10001;
zero=1e-16;
type
jd=record
value,way,over:real;
end;
var oil:array[1..maxn] of ^jd;
n:integer;
d1,c,d2,cost,maxway:real;
function init:boolean;
var i:integer;
begin
new(oil[1]);
oil[1]^.way:=0;
read(d1,c,d2,oil[1]^.value,n);
maxway:=d2*c;
for i:=2 to n+1 do
begin
new(oil[i]);
readln(oil[i]^.way,oil[i]^.value);
oil[i]^.over:=0;
end;
inc(n,2);
new(oil[n]);
oil[n]^.way:=d1;
oil[n]^.value:=0;
oil[n]^.over:=0;
for i:=2 to n do
if oil[i]^.way-oil[i-1]^.way>maxway then
begin
init:=false;
exit
end;
init:=true;
end;
procere buy(i:integer;miles:real);
begin
cost:=cost+miles/d2*oil[i]^.value;
end;
procere solve;
var i,j:integer;
s:real;
begin
i:=1;j:=i+1;
repeat
s:=0.0;
while( s<=maxway+zero) and (j<=n-1) and (oil[i]^.value<=oil[j]^.value) do
begin
inc(j);
s:=s+oil[j]^.way-oil[j-1]^.way
end;
if s<=maxway+zero then
if (oil[i]^.over+zero>=oil[j]^.way-oil[i]^.way) then
oil[j]^.over:=oil[i]^.over-(oil[j]^.way-oil[i]^.way) else
begin
buy(i,oil[j]^.way-oil[i]^.way-oil[i]^.over);
oil[j]^.over:=0.0;
end
else begin
buy(i,maxway-oil[i]^.over);
j:=i+1;
oil[j]^.over:=maxway-(oil[j]^.way-oil[i]^.way);
end;
i:=j;
until i=n;
end;
begin
cost:=0;
if init then begin
solve;
writeln(cost:0:2);
end else writeln('No answer');
end.
例6:n个部件,每个部件必须经过先A后B两道工序。
以知部件i在A,B 机器上的时间分别为ai,bi。如何安排加工顺序,总加工时间最短?
输入:
5 部件 1 2 3 4 5
ai 3 5 8 7 10
bi 6 2 1 4 9
输出:
34
1 5 4 2 3
本问题的贪心策略是A机器上加工短的应优先,B机器上加工短的应靠后。
程序如下:
program workorder;
const maxn=100;
type jd=record
a,b,m,o:integer;
end;
var n,min,i:integer;
c:array[1..maxn] of jd;
order:array[1..maxn] of integer;
procere init;
var i:integer;
begin
readln(n);
for i:=1 to n do
read(c[i].a);
readln;
for i:=1 to n do
read(c[i].b);
readln;
for i:=1 to n do
begin
if c[i].a<c[i].b then c[i].m:=c[i].a else c[i].m:=c[i].b;
c[i].o:=i;
end;
end;
procere sort;
var i,j,k,t:integer;
temp:jd;
begin
for i:=1 to n-1 do
begin
k:=i;t:=c[i].m;
for j:=i+1 to n do
if c[j].m<t then begin t:=c[j].m;k:=j end ;
if k<>i then begin temp:=c[i];c[i]:=c[k];c[k]:=temp end
end;
end;
procere playorder;
var i,s,t:integer;
begin
fillchar(order,sizeof(order),0);
s:=1;
t:=n;
for i:=1 to n do
if c[i].m=c[i].a then begin order[s]:=i;s:=s+1 end
else begin order[t]:=i;t:=t-1;end;
end;
procere calc_t;
var i,t1,t2:integer;
begin
t1:=0;t2:=0;
for i:=1 to n do
begin
t1:=t1+c[order[i]].a;
if t2<t1 then t2:=t1;
t2:=t2+c[order[i]].b;
end;
min:=t2;
end;
begin
init;
sort;
playorder;
calc_t;
writeln(min);
for i:=1 to n do
write(c[order[i]].o,' ');
writeln;
end.
D. 背包问题的算法
1)登上算法
用登山算法求解背包问题 function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');
时间复杂度是非指数的
2)递归法
先看完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n
可使用递归法解决问题程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
说明:当m不大时,编程很简单,但当m较大时,容易超时.
4.2 改进的递归法
改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个
一维数组即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)贪婪算法
改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。
代码思路:从最大的元素开始遍历超递增序列中的每个元素,若背包还有大于或等于当前元素值的空间,则放入,然后继续判断下一个元素;若背包剩余空间小于当前元素值,则判断下一个元素
简单模拟如下:
#define K 10
#define N 10
#i nclude <stdlib.h>
#i nclude <conio.h>
void create(long array[],int n,int k)
{/*产生超递增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*输出当前的超递增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}
void beibao(long array[],int cankao[],long value,int count)
{/*背包问题求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍历超递增序列中的每个元素*/
{
if(r>=array[i])/*如果当前元素还可以放入背包,即背包剩余空间还大于当前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩余空间小于当前元素值*/
cankao[i]=0;
}
}
void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已经选中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法:
#define K 10
#define N 10
#i nclude <stdlib.h>
#i nclude <conio.h>
void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}
void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}
int beibao1(long array[],int cankao[],long value,int n)
{/*贪婪算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物体,再考虑小的物体*/
if((value1+array[i])<=value)/*如果当前物体可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩余容量减少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}
void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
4)动态规划算法
解决0/1背包问题的方法有多种,最常用的有贪婪法和动态规划法。其中贪婪法无法得到问题的最优解,而动态规划法都可以得到最优解,下面是用动态规划法来解决0/1背包问题。
动态规划算法与分治法类似,其基本思想是将待求解问题分解成若干个子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的,若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费过多的时间。动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。
0/1背包问题
在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。
在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r?{c,c-w1 } 为剩余的背包容量。
在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案,如果不是,则会有一个更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一个更好的方案。
假设n=3, w=[100,14,10], p=[20,18,15], c= 116。若设x1 = 1,则在本次决策之后,可用的背包容量为r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的条件,所得值为1 5,但因为[x2,x3 ]= [1,0] 同样符合容量条件且所得值为1 8,因此[x2,x3 ] = [ 0,1] 并非最优策略。即x= [ 1,0,1] 可改进为x= [ 1,1,0 ]。若设x1 = 0,则对于剩下的两种物品而言,容量限制条件为116。总之,如果子问题的结果[x2,x3 ]不是剩余情况下的一个最优解,则[x1,x2,x3 ]也不会是总体的最优解。在此问题中,最优决策序列由最优决策子序列组成。假设f (i,y) 表示剩余容量为y,剩余物品为i,i + 1,...,n 时的最优解的值,即:利用最优序列由最优子序列构成的结论,可得到f 的递归式为:
当j>=wi时: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
当0<=j<wi时:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始时背包问题的最优解。
以本题为例:若0≤y<1 0,则f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最优解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
现在计算xi 值,步骤如下:若f ( 1 ,c) =f ( 2 ,c),则x1 = 0,否则x1 = 1。接下来需从剩余容量c-w1中寻求最优解,用f (2, c-w1) 表示最优解。依此类推,可得到所有的xi (i= 1.n) 值。
在该例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接着利用返回值3 8 -p1=18 计算x2 及x3,此时r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此时r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。
E. 贪心算法的例题分析
例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。
F. C语言 贪心算法求背包问题
是你的冒泡排序出了问题~
你吧 原来的1-2-3号按照东西的价值重新排列现在的1-2-3对应原来的2-1-3了
所以 你输出的时候是按 1-2-3输出的话 就等于第一个是原来的X2 第二个是X1第三个是X3
而且你的冒泡排序用错了 只比较了 P[0]/K[0]和P[1]/K[1] P[1]/K[1]和P[2]/K[2]
周一我去学校帮你重新改改 我家的机器没有C++
周一晚上我会上传答案~我最近正好也要做算法的作业~
#include <stdio.h>
#include <math.h>
#define N 50
float find(float p[N],float w[N],float x[N] ,float M,int n) /*先放单位价值量大的物体,再考虑小的物体*/
{
int i;
float maxprice;
for (i = 0; i < n; i++)
x[i] = 0;
i = 0;
maxprice=0;
while (i < n && w[i] < M)
{
M=M-w[i];
x[i] =w[i]; /* 表示放入数量 */
maxprice=maxprice+p[i];
x[n-1]=M;
i++;
}
if (i < n &&M> 0)
{
maxprice=maxprice+p[i]*x[i]/w[i];
i++;
}
return maxprice;
}
int main()
{
int n,flag=1;
float temp,M,w[N],p[N],x[N];
int a[N],b[N];
int k,j,l=0;
printf(
G. 求NOI的经典题目与算法。
皇后问题。在一个国际象棋棋盘上,放置8个皇后,使她们相互之间不能进攻(只要在一条直线上就不可,即在每一横列竖列斜列只有一个皇后)。求出所有布局。
program eight;
var a:array [1..8] of integer;
b,c,d:array [-7..16] of integer;
t,i,j,k:integer;
procere print;
begin
t:=t+1;
write(t,' ');
for k:=1 to 8 do write(a[k],' ');
writeln;
end;
procere try(i:integer);
var j:integer;
begin
for j:=1 to 8 do {每个皇后都有8种可能位置}
if (b[j]=0) and (c[i+j]=0) and (d[i-j]=0) then {判断位置是否冲突}
begin
a[i]:=j; {摆放皇后}
b[j]:=1; {宣布占领第J行}
c[i+j]:=1; {占领两个对角线}
d[i-j]:=1;
if i<8 then try(i+1) {8个皇后没有摆完,递归摆放下一皇后}
else print; {完成任务,打印结果}
b[j]:=0; {回溯}
c[i+j]:=0;
d[i-j]:=0;
end;
end;
begin
for k:=-7 to 16 do {数据初始化}
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end;
try(1);{从第1个皇后开始放置}
end.
这是深搜的内容
搜索资料:
搜 索 算 法
搜索算法是利用计算机的高性能来有目的的穷举一个问题的部分或所有的可能情况,从而求出问题的解
的一种方法。搜索过程实际上是根据初始条件和扩展规则构造一棵解答树并寻找符合目标状态的节点的过程。
所有的搜索算法从其最终的算法实现上来看,都可以划分成两个部分——控制结构和产生系统,而所有的算
法的优化和改进主要都是通过修改其控制结构来完成的。现在主要对其控制结构进行讨论,因此对其产生系
统作如下约定:
Function ExpendNode(Situation:Tsituation;ExpendWayNo:Integer):TSituation;
表示对给出的节点状态Sitution采用第ExpendWayNo种扩展规则进行扩展,并且返回扩展后的状态。
(本文所采用的算法描述语言为类Pascal。)
第一部分 基本搜索算法
一、回溯算法
回溯算法是所有搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”思想作为其控制结构,
其相当于采用了先根遍历的方法来构造解答树,可用于找解或所有解以及最优解。具体的算法描述如下:
[非递归算法]
<Type>
Node(节点类型)=Record
Situtation:TSituation(当前节点状态);
Way-NO:Integer(已使用过的扩展规则的数目);
End
<Var>
List(回溯表):Array[1..Max(最大深度)] of Node;
pos(当前扩展节点编号):Integer;
<Init>
List<-0;
pos<-1;
List[1].Situation<-初始状态;
<Main Program>
While (pos>0(有路可走)) and ([未达到目标]) do
Begin
If pos>=Max then (数据溢出,跳出主程序);
List[pos].Way-NO:=List[pos].Way-No+1;
If (List[pos].Way-NO<=TotalExpendMethod) then (如果还有没用过的扩展规则)
Begin
If (可以使用当前扩展规则) then
Begin
(用第way条规则扩展当前节点)
List[pos+1].Situation:=ExpendNode(List[pos].Situation,
List[pos].Way-NO);
List[pos+1].Way-NO:=0;
pos:=pos+1;
End-If;
End-If
Else Begin
pos:=pos-1;
End-Else
End-While;
[递归算法]
Procere BackTrack(Situation:TSituation;deepth:Integer);
Var I :Integer;
Begin
If deepth>Max then (空间达到极限,跳出本过程);
If Situation=Target then (找到目标);
For I:=1 to TotalExpendMethod do
Begin
BackTrack(ExpendNode(Situation,I),deepth+1);
End-For;
End;
范例:一个M*M的棋盘上某一点上有一个马,要求寻找一条从这一点出发不重复的跳完棋盘上所有的点的路线。
评价:回溯算法对空间的消耗较少,当其与分枝定界法一起使用时,对于所求解在解答树中层次较深的问题
有较好的效果。但应避免在后继节点可能与前继节点相同的问题中使用,以免产生循环。
二、深度搜索与广度搜索
深度搜索与广度搜索的控制结构和产生系统很相似,唯一的区别在于对扩展节点选取上。由于其保留了
所有的前继节点,所以在产生后继节点时可以去掉一部分重复的节点,从而提高了搜索效率。这两种算法每
次都扩展一个节点的所有子节点,而不同的是,深度搜索下一次扩展的是本次扩展出来的子节点中的一个,
而广度搜索扩展的则是本次扩展的节点的兄弟节点。在具体实现上为了提高效率,所以采用了不同的数据结构.
[广度搜索]
<Type>
Node(节点类型)=Record
Situtation:TSituation(当前节点状态);
Level:Integer(当前节点深度);
Last :Integer(父节点);
End
<Var>
List(节点表):Array[1..Max(最多节点数)] of Node(节点类型);
open(总节点数):Integer;
close(待扩展节点编号):Integer;
New-S:TSituation;(新节点)
<Init>
List<-0;
open<-1;
close<-0;
List[1].Situation<- 初始状态;
List[1].Level:=1;
List[1].Last:=0;
<Main Program>
While (close<open(还有未扩展节点)) and
(open<Max(空间未用完)) and
(未找到目标节点) do
Begin
close:=close+1;
For I:=1 to TotalExpendMethod do(扩展一层子节点)
Begin
New-S:=ExpendNode(List[close].Situation,I);
If Not (New-S in List) then
(扩展出的节点从未出现过)
Begin
open:=open+1;
List[open].Situation:=New-S;
List[open].Level:=List[close].Level+1;
List[open].Last:=close;
End-If
End-For;
End-While;
[深度搜索]
<Var>
Open:Array[1..Max] of Node;(待扩展节点表)
Close:Array[1..Max] of Node;(已扩展节点表)
openL,closeL:Integer;(表的长度)
New-S:Tsituation;(新状态)
<Init>
Open<-0; Close<-0;
OpenL<-1;CloseL<-0;
Open[1].Situation<- 初始状态;
Open[1].Level<-1;
Open[1].Last<-0;
<Main Program>
While (openL>0) and (closeL<Max) and (openL<Max) do
Begin
closeL:=closeL+1;
Close[closeL]:=Open[openL];
openL:=openL-1;
For I:=1 to TotalExpendMethod do(扩展一层子节点)
Begin
New-S:=ExpendNode(Close[closeL].Situation,I);
If Not (New-S in List) then
(扩展出的节点从未出现过)
Begin
openL:=openL+1;
Open[openL].Situation:=New-S;
Open[openL].Level:=Close[closeL].Level+1;
Open[openL].Last:=closeL;
End-If
End-For;
End;
范例:迷宫问题,求解最短路径和可通路径。
评价:广度搜索是求解最优解的一种较好的方法,在后面将会对其进行进一步的优化。而深度搜索多用于只
要求解,并且解答树中的重复节点较多并且重复较难判断时使用,但往往可以用A*或回溯算法代替。
第二部分 搜索算法的优化
一、双向广度搜索
广度搜索虽然可以得到最优解,但是其空间消耗增长太快。但如果从正反两个方向进行广度搜索,理想
情况下可以减少二分之一的搜索量,从而提高搜索速度。
范例:有N个黑白棋子排成一派,中间任意两个位置有两个连续的空格。每次空格可以与序列中的某两个棋子
交换位置,且两子的次序不变。要求出入长度为length的一个初始状态和一个目标状态,求出最少的
转化步数。
问题分析:该题要求求出最少的转化步数,但如果直接使用广度搜索,很容易产生数据溢出。但如果从初始
状态和目标状态两个方向同时进行扩展,如果两棵解答树在某个节点第一次发生重合,则该节点
所连接的两条路径所拼成的路径就是最优解。
对广度搜索算法的改进:
1。添加一张节点表,作为反向扩展表。
2。在while循环体中在正向扩展代码后加入反向扩展代码,其扩展过程不能与
正向过程共享一个for循环。
3。在正向扩展出一个节点后,需在反向表中查找是否有重合节点。反向扩展时
与之相同。
对双向广度搜索算法的改进:
略微修改一下控制结构,每次while循环时只扩展正反两个方向中节点数目较少的一个,可以使两边的发
展速度保持一定的平衡,从而减少总扩展节点的个数,加快搜索速度。
二、分支定界
分支定界实际上是A*算法的一种雏形,其对于每个扩展出来的节点给出一个预期值,如果这个预期值不
如当前已经搜索出来的结果好的话,则将这个节点(包括其子节点)从解答树中删去,从而达到加快搜索速度
的目的。
范例:在一个商店中购物,设第I种商品的价格为Ci。但商店提供一种折扣,即给出一组商品的组合,如果一
次性购买了这一组商品,则可以享受较优惠的价格。现在给出一张购买清单和商店所提供的折扣清单,
要求利用这些折扣,使所付款最少。
问题分析:显然,折扣使用的顺序与最终结果无关,所以可以先将所有的折扣按折扣率从大到小排序,然后
采用回溯法的控制结构,对每个折扣从其最大可能使用次数向零递减搜索,设A为以打完折扣后优
惠的价格,C为当前未打折扣的商品零售价之和,则其预期值为A+a*C,其中a为下一个折扣的折扣
率。如当前已是最后一个折扣,则a=1。
对回溯算法的改进:
1。添加一个全局变量BestAnswer,记录当前最优解。
2。在每次生成一个节点时,计算其预期值,并与BestAnswer比较。如果不好,则调用回溯过程。
三、A*算法
A*算法中更一般的引入了一个估价函数f,其定义为f=g+h。其中g为到达当前节点的耗费,而h表示对从当
前节点到达目标节点的耗费的估计。其必须满足两个条件:
1。h必须小于等于实际的从当前节点到达目标节点的最小耗费h*。
2。f必须保持单调递增。
A*算法的控制结构与广度搜索的十分类似,只是每次扩展的都是当前待扩展节点中f值最小的一个,如果
扩展出来的节点与已扩展的节点重复,则删去这个节点。如果与待扩展节点重复,如果这个节点的估价函数
值较小,则用其代替原待扩展节点,具体算法描述如下:
范例:一个3*3的棋盘中有1-8八个数字和一个空格,现给出一个初始态和一个目标态,要求利用这个空格,
用最少的步数,使其到达目标态。
问题分析:预期值定义为h=|x-dx|+|y-dy|。
估价函数定义为f=g+h。
<Type>
Node(节点类型)=Record
Situtation:TSituation(当前节点状态);
g:Integer;(到达当前状态的耗费)
h:Integer;(预计的耗费)
f:Real;(估价函数值)
Last:Integer;(父节点)
End
<Var>
List(节点表):Array[1..Max(最多节点数)] of Node(节点类型);
open(总节点数):Integer;
close(待扩展节点编号):Integer;
New-S:Tsituation;(新节点)
<Init>
List<-0;
open<-1;
close<-0;
List[1].Situation<- 初始状态;
<Main Program>
While (close<open(还有未扩展节点)) and
(open<Max(空间未用完)) and
(未找到目标节点) do
Begin
Begin
close:=close+1;
For I:=close+1 to open do (寻找估价函数值最小的节点)
Begin
if List.f<List[close].f then
Begin
交换List和List[close];
End-If;
End-For;
End;
For I:=1 to TotalExpendMethod do(扩展一层子节点)
Begin
New-S:=ExpendNode(List[close].Situation,I)
If Not (New-S in List[1..close]) then
(扩展出的节点未与已扩展的节点重复)
Begin
If Not (New-S in List[close+1..open]) then
(扩展出的节点未与待扩展的节点重复)
Begin
open:=open+1;
List[open].Situation:=New-S;
List[open].Last:=close;
List[open].g:=List[close].g+cost;
List[open].h:=GetH(List[open].Situation);
List[open].f:=List[open].h+List[open].g;
End-If
Else Begin
If List[close].g+cost+GetH(New-S)<List[same].f then
(扩展出来的节点的估价函数值小于与其相同的节点)
Begin
List[same].Situation:= New-S;
List[same].Last:=close;
List[same].g:=List[close].g+cost;
List[same].h:=GetH(List[open].Situation);
List[same].f:=List[open].h+List[open].g;
End-If;
End-Else;
End-If
End-For;
End-While;
对A*算法的改进--分阶段A*:
当A*算法出现数据溢出时,从待扩展节点中取出若干个估价函数值较小的节点,然后放弃其余的待扩展
节点,从而可以使搜索进一步的进行下去。
第三部分 搜索与动态规划的结合
例1. 有一个棋子,其1、6面2、4面3、5面相对。现给出一个M*N的棋盘,棋子起初处于(1,1)点,摆放状态
给定,现在要求用最少的步数从(1,1)点翻滚到(M,N)点,并且1面向上。
分析:这道题目用简单的搜索很容易发生超时,特别当M、N较大时。所以可以考虑使用动态规划来解题。对
于一个棋子,其总共只有24种状态。在(1,1)点时,其向右翻滚至(2,1)点,向上翻滚至(1,2)点。而
任意(I,J)点的状态是由(I-1,J)和(I,J-1)点状态推导出来的。所以如果规定棋子只能向上
和向右翻滚,则可以用动态规划的方法将到达(M,N)点的所有可能的状态推导出来。显然,从(1,
1)到达(N,M)这些状态的路径时最优的。如果这些状态中有1面向上的,则已求出解。如果没有,
则可以从(M,N)点开始广度搜索,以(M,N)点的状态组作为初始状态,每扩展一步时,检查当前
所得的状态组是否有状态与到达格子的状态组中的状态相同,如果有,则由动态规划的最优性和广度
搜索的最优性可以保证已求出最优解。
例2.给出一个正整数n,有基本元素a,要求通过最少次数的乘法,求出a^n。
分析:思路一:这道题从题面上来看非常象一道动态规划题,a^n=a^x1*a^x2。在保证a^x1和a^x2的最优性之
后,a^n的最优性应该得到保证。但是仔细分析后可以发现,a^x1与a^x2的乘法过程中可能有
一部分的重复,所以在计算a^n时要减去其重复部分。由于重复部分的计算较繁琐,所以可以
将其化为一组展开计算。描述如下:
I:=n;(拆分a^n)
split[n]:=x1;(分解方案)
Used[n]:=True;(在乘法过程中出现的数字)
Repeat(不断分解数字)
Used[I-split[I]]:=True;
Used[split[I]]:=True;
Dec(I);
While (I>1) and (not Used[I]) do dec(I);
Until I=1;
For I:=n downto 1 do(计算总的乘法次数)
If Used[I] then count:=count+1;
Result:=count;(返回乘法次数)
思路二:通过对思路一的输出结果的分析可以发现一个规律:
a^19=a^1*a^18
a^18=a^2*a^16
a^16=a^8*a^8
a^8=a^4*a^4
a^4=a^2*a^2
a^2=a*a
对于一个n,先构造一个最接近的2^k,然后利用在构造过程中产生的2^I,对n-2^k进行二进制分解,
可以得出解。对次数的计算的描述如下:
count:=0;
Repeat
If n mod 2 = 0 then count:=count+1
Else count:=count+2;
n:=n div 2;
Until n=1;
Result:=count;
反思:观察下列数据:
a^15 a^23 a^27
Cost:5 Cost:6 Cost:6
a^2=a^1*a^1 a^2=a^1*a^1 a^2=a^1*a^1
a^3=a^1*a^2 a^3=a^1*a^2 a^3=a^1*a^2
a^6=a^3*a^3 a^5=a^2*a^3 a^6=a^3*a^3
a^12=a^6*a^6 a^10=a^5*a^5 a^12=a^6*a^6
a^15=a^3*a^12 a^20=a^10*a^10 a^24=a^12*a^12
a^23=a^3*a^20 a^27=a^3*a^24
这些数据都没有采用思路二种的分解方法,而都优于思路二中所给出的解。但是经过实测,思路一二
的所有的解的情况相同,而却得不出以上数据中的解。经过对a^2-a^15的数据的完全分析,发现对于
一个a^n,存在多个分解方法都可以得出最优解,而在思路一中只保留了一组分解方式。例如对于a^6
只保留了a^2*a^4,从而使a^3*a^3这条路中断,以至采用思路一的算法时无法得出正确的耗费值,从
而丢失了最优解。所以在计算a^n=a^x1*a^x2的重复时,要引入一个搜索过程。例如:a^15=a^3*a^12,
a^12=a^6*a^6,而a^6=a^3*a^3。如果采用了a^6=a^2*a^4,则必须多用一步。
<Type>
Link=^Node; (使用链表结构纪录所有的可能解)
Node=Record
split:Integer;
next :Link;
End;
<Var>
Solution:Array[1..1000] of Link; (对于a^n的所有可能解)
Cost :Array[1..1000] of Integer; (解的代价)
max :Integer; (推算的上界)
<Main Program>
Procere GetSolution;
Var i,j :Integer;
min,c:Integer;
count:Integer;
temp,tail:Link;
plan :Array[1..500] of Integer;
nUsed:Array[1..1000] of Boolean;
Procere GetCost(From,Cost:Integer); (搜索计算最优解)
Var temp:Link;
a,b :Boolean;
i :Integer;
Begin
If Cost>c then Exit; (剪枝)
If From=1 then (递归终结条件)
Begin
If Cost<c then c:=Cost;
Exit;
End;
temp:=Solution[From];
While temp<>NIL do (搜索主体)
Begin
a:=nUsed[temp^.Split];
If not a then inc(cost);
nUsed[temp^.Split]:=True;
b:=nUsed[From - temp^.Split];
If not b then inc(cost);
nUsed[From-temp^.Split]:=True;
i:=From-1;
While (i>1) and (not nUsed) do dec(i);
GetCost(i,Cost);
If not a then dec(cost);
If not b then dec(cost);
nUsed[From-temp^.Split]:=b;
nUsed[temp^.Split]:=a;
temp:=temp^.next;
End;
End;
Begin
For i:=2 to Max do(动态规划计算所有解)
Begin
count:=0;
min:=32767;
For j:=1 to i div 2 do (将I分解为I-J和J)
Begin
c:=32767;
FillChar(nUsed,Sizeof(nUsed),0);
nUsed[j]:=True;nUsed[i-j]:=True;
If j=i-j then GetCost(i-j,1)
Else GetCost(i-j,2);
If c<min then
Begin
count:=1;
min:=c;
plan[count]:=j;
End
Else if c=min then
Begin
inc(count);
plan[count]:=j;
End;
End;
new(solution); (构造解答链表)
solution^.split:=plan[1];
solution^.next:=NIL;
Cost:=min;
tail:=solution;
For j:=2 to count do
Begin
new(temp);
temp^.split:=plan[j];
temp^.next:=NIL;
tail^.next:=temp;
tail:=temp;
End;
End;
End;
背包问题:
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n
可使用递归法解决问题程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
说明:当m不大时,编程很简单,但当m较大时,容易超时.
4.2 改进的递归法
改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个
一维数组即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
H. 背包问题的算法
3.2 背包问题
背包问题有三种
1.部分背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,它们的总重量分别是W1,W2,...,Wn,它们的总价值分别为C1,C2,...,Cn.求旅行者能获得最大总价值。
解决问题的方法是贪心算法:将C1/W1,C2/W2,...Cn/Wn,从大到小排序,不停地选择价值与重量比最大的放人背包直到放满为止.
2.0/1背包
一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。
<1>分析说明:
显然这个题可用深度优先方法对每件物品进行枚举(选或不选用0,1控制).
程序简单,但是当n的值很大的时候不能满足时间要求,时间复杂度为O(2n)。按递归的思想我们可以把问题分解为子问题,使用递归函数
设 f(i,x)表示前i件物品,总重量不超过x的最优价值
则 f(i,x)=max(f(i-1,x-W[i])+C[i],f(i-1,x))
f(n,m)即为最优解,边界条件为f(0,x)=0 ,f(i,0)=0;
动态规划方法(顺推法)程序如下:
程序如下:
program knapsack02;
const maxm=200;maxn=30;
type ar=array[1..maxn] of integer;
var m,n,j,i:integer;
c,w:ar;
f:array[0..maxn,0..maxm] of integer;
function max(x,y:integer):integer;
begin
if x>y then max:=x else max:=y;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
for i:=1 to m do f(0,i):=0;
for i:=1 to n do f(i,0):=0;
for i:=1 to n do
for j:=1 to m do
begin
if j>=w[i] then f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else f[i,j]:=f[i-1,j];
end;
writeln(f[n,m]);
end.
使用二维数组存储各子问题时方便,但当maxm较大时如maxn=2000时不能定义二维数组f,怎么办,其实可以用一维数组,但是上述中j:=1 to m 要改为j:=m downto 1,为什么?请大家自己解决。
3.完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-w[i])+c[i]} 当x>=w[i] 1<=i<=n
程序如下:(顺推法)
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
f:array[0..maxm] of integer;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
f(0):=0;
for i:=1 to m do
for j:=1 to n do
begin
if i>=w[j] then t:=f[i-w[j]]+c[j];
if t>f[i] then f[i]:=t
end;
writeln(f[m]);
end.
I. C语言贪心算法 背包问题
if(k!=i)
t=T[i];
T[i]=T[k];
T[k]=t;
交换操作的三步要用{}括起来,不然只有t=T[i];是if的执行语句
J. 计算机算法分析考试:动态规划0-1背包问题,怎么算
问题描述:
给定n种物品和一背包,物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品(物品不能分割),使得装入背包中物品的总价值最大?
抽象描述如下:
x[n]:表示物品的选择,x[i]=1表示选择放进物品i到背包中。