导航:首页 > 源码编译 > 多目标算法大全

多目标算法大全

发布时间:2022-12-20 12:19:48

A. 多目标进化算法中的pareto解及pareto前沿介绍

多目标求解会筛选出一个相对较优的解的集合,在这个集合里就要用到pareto找出相对优的解或者最优解。

多目标优化问题的数学模型一般可以写成如下形式:

        fig 2表示n个目标函数,目标是都使之达到最小。

        fig 3是其变量的约束集合,可以理解为变量的取值范围,下面介绍具体的解之间的支配,占优关系。

1:解A优于解B(解A强帕累托支配解B)

        假设现在有两个目标函数,解A对应的目标函数值都比解B对应的目标函数值好,则称解A比解B优越,也可以叫做解A强帕累托支配解B,举个例子,就很容易懂了.

       下图中代表的是两个目标的的解的情况,横纵坐标表示两个目标函数值,E点表示的解所对应的两个目标函数值都小于C,D两个点表示的解所对应的两个目标函数值,所以解E优于解C,D.

2:解A无差别于解B(解A能帕累托支配解B)

        同样假设两个目标函数,解A对应的一个目标函数值优于解B对应的一个目标函数值,但是解A对应的另一个目标函数值要差于解B对应的一个目标函数值,则称解A无差别于解B,也叫作解A能帕累托支配解B,举个例子,还是上面的图,点C和点D就是这种情况,C点在第一个目标函数的值比D小,在第二个函数的值比D大。

3:最优解

        假设在设计空间中,解A对应的目标函数值优越其他任何解,则称解A为最优解,举个例子,下图的x1就是两个目标函数的最优解,使两个目标函数同时达到最小,但是前面也说过,实际生活中这种解是不可能存在的。真要存在就好了,由此提出了帕累托最优解.

4:帕累托最优解

同样假设两个目标函数,对于解A而言,在 变量空间 中找不到其他的解能够优于解A(注意这里的优于一定要两个目标函数值都优于A对应的函数值),那么解A就是帕累托最优解.

        举个例子,下图中应该找不到比 x1 对应的目标函数都小的解了吧,即找不到一个解优于 x1 了,同理也找不到比 x2 更优的解了,所以这两个解都是帕累托最优解,实际上,x1-x2 这个范围的解都是帕累托最优解,不信自己慢慢想。因此对于多目标优化问题而言,帕累托最优解只是问题的一个可接受解,一般都存在多个帕累托最优解,这个时候就需要人们自己决策了。

5:帕累托最优前沿

还是看 刚才 那张图 ,如下图所示,更好的理解一下帕累托最优解,实心点表示的解都是帕累托最优解,所有的帕累托最优解构成帕累托最优解集,这些解经目标函数映射构成了该问题的Pareto最优前沿或Pareto前沿面,说人话,即帕累托最优解对应的目标函数值就是帕累托最优前沿。

对于两个目标的问题,其Pareto最优前沿通常是条线。而对于多个目标,其Pareto最优前沿通常是一个超曲面。

图片来源于网络,侵删。

B. 学习多目标优化需要掌握哪些python知识

多目标优化

目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-
objective Optimization Problem,
SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem,
MOP)。不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。

多目标优化算法归结起来有传统优化算法和智能优化算法两大类。
1. 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。
2. 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

Pareto最优解:

若x*∈C*,且在C中不存在比x更优越的解x,则称x*是多目标最优化模型式的Pareto最优解,又称为有效解。
一般来说,多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。传统优化技术一般每次能得到Pareo解集中的一个,而
用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解。它是由那些任一个目标函数值的提高都必须以牺牲其
他目标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。

Pareto有效(最优)解非劣解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比集合之外的解好。

求解多目标优化问题最有名的就是NSGA-II了,是多目标遗传算法,但其对解的选择过程可以用在其他优化算法上,例如粒子群,蜂群等等。这里简单介绍一下NSGA-II的选择算法。主要包含三个部分:
1. 快速非支配排序
要先讲一下支配的概念,对于解X1和X2,如果X1对应的所有目标函数都不比X2大(最小问题),且存在一个目标值比X2小,则X2被X1支配。
快速非支配排序是一个循环分级过程:首先找出群体中的非支配解集,记为第一非支配层,irank=1(irank是个体i的非支配值),将其从群体中除去,继续寻找群体中的非支配解集,然后irank=2。
2. 个体拥挤距离
为了使计算结果在目标空间比较均匀的分布,维持种群多样性,对每个个体计算拥挤距离,选择拥挤距离大的个体,拥挤距离的定义为:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1个个体的第m目标函数值,fmaxm 和 fminm是集合中第m个目标函数的最大和最小值。
3. 精英策略选择
精英策略就是保留父代中的优良个体直接进入子代,防止获得的Pareto最优解丢失。将第t次产生的子代种群和父代种群合并,然后对合并后的新种群进行非支配排序,然后按照非支配顺序添加到规模为N的种群中作为新的父代。

C. 多目标差分进化算法

差分进化算法(Differential Evolution, DE)是一种基于群体差异的启发式随机搜索算法,该算法是由R.Storn和K.Price为求解Chebyshev多项式而提出的。是一种用于最佳化问题的后设启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法。

将问题的求解表示成"染色体"的适者生存过程,通过"染色体"群的一代代不断进化,包括复制、交叉和变异等操作,最终收敛到"最适应环境"的个体,从而求得问题的最优解或满意解。

差分进化算法类似遗传算法,包含变异,交叉操作,淘汰机制,而差分进化算法与遗传算法不同之处,在于变异的部分是随选两个解成员变数的差异,经过伸缩后加入当前解成员的变数上,因此差分进化算法无须使用概率分布产生下一代解成员。最优化方法分为传统优化方法和启发式优化方法两大类。传统的优化方法大多数都是利用目标函数的导数求解;而启发式优化方法以仿生算法为主,通过启发式搜索策略实现求解优化。启发式搜索算法不要求目标函数连续、可微等信息,具有较好的全局寻优能力,成为最优化领域的研究热点。

在人工智能领域中,演化算法是演化计算的一个分支。它是一种基于群体的元启发式优化算法,具有自适应、自搜索、自组织和隐并行性等特点。近年来,很多学者将演化算法应用到优化领域中,取得了很大的成功,并已引起了人们的广泛关注。越来越多的研究者加入到演化优化的研究之中,并对演化算法作了许多改进,使其更适合各种优化问题。目前,演化算法已广泛应用于求解无约束函数优化、约束函数优化、组合优化、多目标优化等多种优化问题中。

D. 基于DEAP库的Python进化算法从入门到入土--(六)多目标遗传算法 NSGA-II

在很多实际工程问题中,我们的优化目标不止一个,而是对多个目标函数求一个综合最优解。例如在物流配送问题中,不仅要求配送路径最短,还可能需要参与运输车辆最少等。

多目标优化问题的数学模型可以表达为:

多目标优化问题通常具有如下特点:

对于多目标优化问题,传统方法是将原问题通过加权方式变换为单目标优化问题,进而求得最优解。该方法具有两大问题:

遗传算法具有多点多方向搜索的特征,在一次搜索中可以得到多个Pareto最优解,因此更适合求解多目标优化问题。

而当前用于求解多目标优化问题的遗传算法一般有两种思路:

NSGA-II(nondominated sorting genetic algorithm II)是2002年Deb教授提出的NSGA的改进型,这个算法主要解决了第一版NSGA的三个痛点:

针对这三个问题,在NSGA-II中,Deb提出了快速非支配排序算子,引入了保存精英策略,并用“拥挤距离”(crowding distance)替代了共享(sharing)。

在介绍NSGA-II的整体流程之前,我们需要先了解快速非支配排序和拥挤距离的定义。

解的支配关系与Pareto最优解

下图表示了解之间的支配和强支配关系:

下图表示了一个最小化问题解集中的Pareto最优解和Pareto弱最优解:

快速非支配排序步骤

快速非支配排序就是将解集分解为不同次序的Pareto前沿的过程。

它可以描述为:

DEAP实现

DEAP内置了实现快速非支配排序操作的函数 tools.emo.sortNondominated

tools.emo.sortNondominated(indivials, k, first_front_only=False)

参数:

返回:

拥挤距离的定义

在NSGA II中,为了衡量在同一个前沿中各个解质量的优劣,作者为每个解分配了一个拥挤距离。其背后的思想是 让求得的Pareto最优解在objective space中尽量分散 。也就有更大可能让解在Pareto最优前沿上均匀分布。

DEAP实现

DEAP中内置了计算拥挤距离的函数 tools.emo.assignCrowdingDist

tools.emo.assignCrowdingDist(indivials)

参数:

返回:

比较操作

根据快速非支配排序和拥挤距离计算的结果,对族群中的个体进行排序:

对两个解 ,

在每个迭代步的最后,将父代与子代合为一个族群,依照比较操作对合并后族群中的个体进行排序,然后从中选取数量等同于父代规模的优秀子代,这就是NSGA-II算法中的精英保存策略。

DEAP实现

DEAP内置了实现NSGA-II中的基于拥挤度的选择函数 tools.selNSGA2 用来实现精英保存策略:

tools.selNSGA2(indivials, k, nd='standard')

参数:

返回:

这里选用ZDT3函数作为测试函数,函数可表达为:

其Pareto最优解集为

这里为了方便可视化取 。

下图给出了该函数在Decision Space和Objective Space中的对应:

其pareto最优解在Objective Space中如下图红点所示:

将结果可视化:

得到:

可以看到NSGA-II算法得到的Pareto最优前沿质量很高:最优解均匀分布在不连续前沿的各个线段上;同时在最优前沿以外没有个体存在。

E. 多目标优化算法有哪些

主要内容包括:多目标进化算法、多目标粒子群算法、其他多目标智能优化算法、人工神经网络优化、交通与物流系统优化、多目标生产调度和电力系统优化及其他。

F. 多目标优化算法

姓名:袁卓成;学号:20021210612; 学院:电子工程学院

转自 https://blog.csdn.net/weixin_43202635/article/details/82700342

【嵌牛导读】 本文介绍了各类多目标优化算法

【嵌牛鼻子】  多目标优化, pareto

【嵌牛提问】 多目标优化算法有哪些?

【嵌牛正文】

1)无约束和有约束条件;

2)确定性和随机性最优问题(变量是否确定);

3)线性优化与非线性优化(目标函数和约束条件是否线性);

4)静态规划和动态规划(解是否随时间变化)。

使多个目标在给定区域同时尽可能最佳,多目标优化的解通常是一组均衡解(即一组由众多 Pareto最优解组成的最优解集合 ,集合中的各个元素称为 Pareto最优解或非劣最优解)。

①非劣解——多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。

②Pareto最优解——无法在改进任何目标函数的同时不削弱至少一个其他目标函数。这种解称作非支配解或Pareto最优解。

多目标优化问题不存在唯一的全局最优解 ,过多的非劣解是无法直接应用的 ,所以在求解时就是要寻找一个最终解。

(1)求最终解主要有三类方法:

一是求非劣解的生成法,即先求出大量的非劣解,构成非劣解的一个子集,然后按照决策者的意图找出最终解;(生成法主要有加权法﹑约束法﹑加权法和约束法结合的混合法以及多目标遗传算法)

二为交互法,不先求出很多的非劣解,而是通过分析者与决策者对话的方式,逐步求出最终解;

三是事先要求决策者提供目标之间的相对重要程度,算法以此为依据,将多目标问题转化为单目标问题进行求解。

(2)多目标优化算法归结起来有传统优化算法和智能优化算法两大类。

传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。

智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

两者的区别——传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。

①MOEA通过对种群 X ( t)执行选择、交叉和变异等操作产生下一代种群 X ( t + 1) ;

②在每一代进化过程中 ,首先将种群 X ( t)中的所有非劣解个体都复制到外部集 A ( t)中;

③然后运用小生境截断算子剔除A ( t)中的劣解和一些距离较近的非劣解个体 ,以得到个体分布更为均匀的下一代外部集 A ( t + 1) ;

④并且按照概率 pe从 A ( t + 1)中选择一定数量的优秀个体进入下代种群;

⑤在进化结束时 ,将外部集中的非劣解个体作为最优解输出。

NSGA一II算法的基本思想:

(1)首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;

(2)其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;

(3)最后,通过遗传算法的基本操作产生新的子代种群:依此类推,直到满足程序结束的条件。

非支配排序算法:

考虑一个目标函数个数为K(K>1)、规模大小为N的种群,通过非支配排序算法可以对该种群进行分层,具体的步骤如下:

通过上述步骤得到的非支配个体集是种群的第一级非支配层;

然后,忽略这些标记的非支配个体,再遵循步骤(1)一(4),就会得到第二级非支配层;

依此类推,直到整个种群被分类。

拥挤度 ——指种群中给定个体的周围个体的密度,直观上可表示为个体。

拥挤度比较算子:

设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地到底在哪里,但是它们知道自己当前的位置距离玉米地有多远。那么找到玉米地的最佳策略,也是最简单有效的策略就是是搜寻目前距离玉米地最近的鸟群的周围区域。

基本粒子群算法:

粒子群由 n个粒子组成 ,每个粒子的位置 xi 代表优化问题在 D维搜索空间中潜在的解;

粒子在搜索空间中以一定的速度飞行 , 这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整下一步飞行方向和距离;

所有的粒子都有一个被目标函数决定的适应值(可以将其理解为距离“玉米地”的距离) , 并且知道自己到目前为止发现的最好位置 (个体极值 pi )和当前的位置 ( xi ) 。

粒子群算法的数学描述 :

每个粒子 i包含为一个 D维的位置向量 xi = ( xi1, xi2, …, xiD )和速度向量 vi = ( vi1, vi2,…, viD ) ,粒子 i搜索解空间时 ,保存其搜索到的最优经历位置pi = ( pi1, pi2, …, piD ) 。在每次迭代开始时 ,粒子根据自身惯性和经验及群体最优经历位置 pg = ( pg1, pg2, …, pgD )来调整自己的速度向量以调整自身位置。

粒子群算法基本思想:

(1)初始化种群后 ,种群的大小记为 N。基于适应度支配的思想 ,将种群划分成两个子群 ,一个称为非支配子集 A,另一个称为支配子集 B ,两个子集的基数分别为 n1、n2 。

(2)外部精英集用来存放每代产生的非劣解子集 A,每次迭代过程只对 B 中的粒子进行速度和位置的更新 ;

(3)并对更新后的 B 中的粒子基于适应度支配思想与 A中的粒子进行比较 ,若 xi ∈B , ϖ xj ∈A,使得 xi 支配 xj,则删除 xj,使 xi 加入 A 更新外部精英集 ;且精英集的规模要利用一些技术维持在一个上限范围内 ,如密度评估技术、分散度技术等。

(4)最后 ,算法终止的准则可以是最大迭代次数 Tmax、计算精度ε或最优解的最大凝滞步数 Δt等。

G. 多目标智能优化算法及其应用的目录

《智能科学技术着作丛书》序
前言
第1章 绪论
1.1 进化算法
1.1.1 进化算法的基本框架
1.1.2 遗传算法
1.1.3 进化策略
1.1.4 进化规划
1.2 粒子群算法
1.2.1 标准粒子群算法
1.2.2 算法解析
1.3 蚁群算法
1.3.1 蚁群算法的基本思想
1.3.2 蚁群算法的实现过程
1.3.3 蚁群算法描述
1.3.4 蚁群优化的特点
1.4 模拟退火算法122
1.4.1 模拟退火算法的基本原理
1.4.2 模拟退火算法描述
1.5 人工免疫系统
1.5.1 生物免疫系统
1.5.2 人工免疫系统
1.6 禁忌搜索
1.7 分散搜索
1.8 多目标优化基本概念
参考文献
第2章 多目标进化算法
2.1 基本原理
2.1.1 MOEA模型
2.1.2 性能指标与测试函数
2.2 典型多目标进化算法
2.2.1 VEGA、MOGA、NPGA和NSGA
2.2.2 SPEA和SPEA2
2.2.3 NSGA2
2.2.4 PAES
2.2.5 其他典型MOEA
2.3 多目标混合进化算法
2.3.1 多目标遗传局部搜索
2.3.2 J—MOGLS
2.3.3 M PAES
2.3.4 多目标混沌进化算法
2.4 协同多目标进化算法
2.5 动态多目标进化算法
2.5.1 IMOEA
2.5.2 动态MOEA(DMOEA)
2.6 并行多目标进化算法
2.6.1 并行多目标进化算法的基本原理
2.6.2 多分辨率多目标遗传算法
2.6.3 并行单前端遗传算法
2.7 其他多目标进化算法
2.7.1 高维多目标优化的NSGA2改进算法
2.7.2 动态多目标优化的进化算法
2.8 结论与展望
参考文献
第3章 多目标粒子群算法
3.1 基本原理
3.2 典型多目标粒子群算法
3.2.1 CMOPSO
3.2.2 多目标全面学习粒子群算法
3.2.3 Pareto档案多目标粒子群优化
3.3 多目标混合粒子群算法
3.3.1 模糊多目标粒子群算法
3.3.2 基于分散搜索的多目标混合粒子群算法
3.4 交互粒子群算法
3.5 结论
参考文献
第4章 其他多目标智能优化算法
4.1 多目标模拟退火算法
4.2 多目标蚁群算法
4.2.1 连续优化问题的多目标蚁群算法
4.2.2 组合优化问题的多目标蚁群算法
4.3 多目标免疫算法
4.4 多目标差分进化算法
4.5 多目标分散搜索
4.6 结论
参考文献
第5章 人工神经网络优化
5.1 Pareto进化神经网络
5.2 径向基神经网络优化与设计
5.3 递归神经网络优化与设计
5.4 模糊神经网络多目标优化
5.5 结论
参考文献
第6章 交通与物流系统优化
6.1 物流配送路径优化
6.1.1 多目标车辆路径优化
6.1.2 多目标随机车辆路径优化
6.2 城市公交路线网络优化
6.3 公共交通调度
6.3.1 概述
6.3.2 多目标驾驶员调度
6.4 结论
参考文献
第7章 多目标生产调度
7.1 生产调度描述_
7.1.1 车间调度问题
7.1.2 间隙生产调度
7.1.3 动态生产调度
7.1.4 批处理机调度和E/T调度
7.2 生产调度的表示方法
7.3 基于进化算法的多目标车间调度
7.3.1 多目标流水车间调度
7.3.2 多目标作业车间调度
7.4 基于进化算法的多目标模糊调度
7.4.1 模糊调度:Sakawa方法
7.4.2 模糊作业车间调度:cMEA方法
7.5 基于进化算法的多目标柔性调度
7.5.1 混合遗传调度方法
7.5.2 混合遗传算法
7.6 基于粒子群优化的多目标调度
7.6.1 基于粒子群优化的多目标作业车间调度
7.6.2 多目标柔性调度的混合粒子群方法
7.7 多目标随机调度
7.8 结论与展望
参考文献
第8章 电力系统优化及其他
8.1 电力系统优化
8.1.1 基于免疫算法的多目标无功优化
8.1.2 基于分层优化的多目标电网规划
8.1.3 基于NSGA2及协同进化的多目标电网规划
8.2 多播Qos路由优化
8.3 单元制造系统设计
8.3.1 概述
8.3.2 基于禁忌搜索的多目标单元构造
8.3.3 基于并行禁忌搜索的多目标单元构造
8.4 自动控制系统设计
8.4.1 概述
8.4.2 混合动力学系统控制
8.4.3 鲁棒PID控制器设计
8.5 结论
参考文献
附录 部分测试函数
……

H. 多目标优化算法

多目标优化算法如下:

一、多目标进化算法(MOEA)

1、MOEA通过对种群X(t)执行选择、交叉和变异等操作产生下一代种群X(t+1)。

2、在每一代进化过程中 ,首先将种群X(t)中的所有非劣解个体都复制到外部集A(t)中。

2、智能优化算法:包括进化算法(简称EA)、粒子群算法(简称PSO)等。

两者的区别:传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。

I. 目标跟踪检测算法(四)——多目标扩展

姓名:刘帆;学号:20021210609;学院:电子工程学院

https://blog.csdn.net/qq_34919792/article/details/89893665

【嵌牛导读】基于深度学习的算法在图像和视频识别任务中取得了广泛的应用和突破性的进展。从图像分类问题到行人重识别问题,深度学习方法相比传统方法表现出极大的优势。与行人重识别问题紧密相关的是行人的多目标跟踪问题。

【嵌牛鼻子】深度多目标跟踪算法

【嵌牛提问】深度多目标跟踪算法有哪些?

【嵌牛正文】

第一阶段(概率统计最大化的追踪)

1)多假设多目标追踪算法(MHT,基于kalman在多目标上的拓展)

多假设跟踪算法(MHT)是非常经典的多目标跟踪算法,由Reid在对雷达信号的自动跟踪研究中提出,本质上是基于Kalman滤波跟踪算法在多目标跟踪问题中的扩展。

卡尔曼滤波实际上是一种贝叶斯推理的应用,通过历史关联的预测量和k时刻的预测量来计算后验概率:

关联假设的后验分布是历史累计概率密度的连乘,转化为对数形式,可以看出总体后验概率的对数是每一步观察似然和关联假设似然的求和。但是若同时出现多个轨迹的时候,则需要考虑可能存在的多个假设关联。

左图为k-3时刻三个检测观察和两条轨迹的可能匹配。对于这种匹配关系,可以继续向前预测两帧,如图右。得到一种三层的假设树结构,对于假设树根枝干的剪枝,得到k-3时刻的最终关联结果。随着可能性增加,假设组合会爆炸性增多,为此,只为了保留最大关联性,我们需要对其他的节点进行裁剪。下式为选择方程

实际上MHT不会单独使用,一般作为单目标追踪的扩展添加。

2)基于检测可信度的粒子滤波算法

这个算法分为两个步骤:

1、对每一帧的检测结果,利用贪心匹配算法与已有的对象轨迹进行关联。

其中tr表示一个轨迹,d是某一个检测,他们的匹配亲和度计算包含三个部分:在线更新的分类学习模型(d),用来判断检测结果是不是属于轨迹tr; 轨迹的每个粒子与检测的匹配度,采用中心距离的高斯密度函数求和(d-p)表示;与检测尺寸大小相关的阈值函数g(tr,d),表示检测与轨迹尺度的符合程度, 而α是预设的一个超参数。

计算出匹配亲和度矩阵之后,可以采用二部图匹配的Hungarian算法计算匹配结果。不过作者采用了近似的贪心匹配算法,即首先找到亲和度最大的那个匹配,然后删除这个亲和度,寻找下一个匹配,依次类推。贪心匹配算法复杂度是线性,大部分情况下,也能得到最优匹配结果。

2、利用关联结果,计算每个对象的粒子群权重,作为粒子滤波框架中的观察似然概率。

其中tr表示需要跟踪的对象轨迹,p是某个粒子。指示函数I(tr)表示第一步关联中,轨迹tr是不是关联到某个检测结果,当存在关联时,计算与关联的检测d 的高斯密度P{n}(p-d );C{tr}§是对这个粒子的分类概率;§是粒子通过检测算法得到的检测可信度,(tr)是一个加权函数,计算如下:

3)基于马尔科夫决策的多目标跟踪算法

作者把目标跟踪看作为状态转移的过程,转移的过程用马尔科夫决策过程(MDP)建模。一个马尔科夫决策过程包括下面四个元素:(S, A, T(.),R(.))。其中S表示状态集合,A表示动作集合,T表示状态转移集合,R表示奖励函数集合。一个决策是指根据状态s确定动作a, 即 π: SA。一个对象的跟踪过程包括如下决策过程:

从Active状态转移到Tracked或者Inactive状态:即判断新出现的对象是否是真。

从Tracked状态转移到Tracked或者Lost状态:即判断对象是否是持续跟踪或者暂时处于丢失状态。

从Lost状态转移到Lost或者Tracked或者Inactive状态:即判断丢失对象是否重新被跟踪,被终止,或者继续处于丢失状态。

作者设计了三个奖励函数来描述上述决策过程:

第一个是:

即判断新出现的对象是否为真,y(a)=1时表示转移到跟踪状态,反之转移到终止状态。这是一个二分类问题,采用2类SVM模型学习得到。这里用了5维特征向量:包括x-y坐标、宽、高和检测的分数。

第二个是:

这个函数用来判断跟踪对象下一时刻状态是否是出于继续跟踪,还是处于丢失,即跟踪失败。这里作者用了5个历史模板,每个模板和当前图像块做光流匹配,emedFB表示光流中心偏差, 表示平均重合率。 和 是阈值。

第三个是:

这个函数用来判断丢失对象是否重新跟踪,或者终止,或者保持丢失状态不变。这里当丢失状态连续保持超过 (=50)时,则转向终止,其他情况下通过计算M个检测匹配,来判断是否存在最优的匹配使上式(3-14)奖励最大,并大于0。这里涉及两个问题如何设计特征以及如何学习参数。这里作者构造了12维与模板匹配相关的统计值。而参数的学习采用强化学习过程,主要思想是在犯错时候更新二类分类器值。

第二阶段 深度学习应用

1)基于对称网络的多目标跟踪算法

关于Siamese网络在单目标跟踪深度学习中有了介绍,在这里不再介绍,可以向前参考。

2)基于最小多割图模型的多目标跟踪算法

上述算法中为了匹配两个检测采用LUV图像格式以及光流图像。Tang等人在文献中发现采用深度学习计算的类光流特征(DeepMatching),结合表示能力更强的模型也可以得到效果很好的多目标跟踪结果。

基于DeepMatching特征,可以构造下列5维特征:

其中MI,MU表示检测矩形框中匹配的点的交集大小以及并集大小,ξv和ξw表示检测信任度。利用这5维特征可以学习一个逻辑回归分类器。

同样,为了计算边的匹配代价,需要设计匹配特征。这里,作者采用结合姿态对齐的叠加Siamese网络计算匹配相似度,如图9,采用的网络模型StackNetPose具有最好的重识别性能。

综合StackNetPose网络匹配信任度、深度光流特征(deepMatching)和时空相关度,作者设计了新的匹配特征向量。类似于[2], 计算逻辑回归匹配概率。最终的跟踪结果取得了非常突出的进步。在MOT2016测试数据上的结果如下表:

3)通过时空域关注模型学习多目标跟踪算法

除了采用解决目标重识别问题的深度网络架构学习检测匹配特征,还可以根据多目标跟踪场景的特点,设计合适的深度网络模型来学习检测匹配特征。Chu等人对行人多目标跟踪问题中跟踪算法发生漂移进行统计分析,发现不同行人发生交互时,互相遮挡是跟踪算法产生漂移的重要原因[4]。如图10。

在这里插入图片描述

针对这个问题,文献[4]提出了基于空间时间关注模型(STAM)用于学习遮挡情况,并判别可能出现的干扰目标。如图11,空间关注模型用于生成遮挡发生时的特征权重,当候选检测特征加权之后,通过分类器进行选择得到估计的目标跟踪结果,时间关注模型加权历史样本和当前样本,从而得到加权的损失函数,用于在线更新目标模型。

该过程分三步,第一步是学习特征可见图:

第二步是根据特征可见图,计算空间关注图(Spatial Attention):

其中fatt是一个局部连接的卷积和打分操作。wtji是学习到的参数。

第三步根据空间注意图加权原特征图:

对生成的加权特征图进行卷积和全连接网络操作,生成二元分类器判别是否是目标自身。最后用得到分类打分选择最优的跟踪结果。

4)基于循环网络判别融合表观运动交互的多目标跟踪算法

上面介绍的算法采用的深度网络模型都是基于卷积网络结构,由于目标跟踪是通过历史轨迹信息来判断新的目标状态,因此,设计能够记忆历史信息并根据历史信息来学习匹配相似性度量的网络结构来增强多目标跟踪的性能也是比较可行的算法框架。

考虑从三个方面特征计算轨迹历史信息与检测的匹配:表观特征,运动特征,以及交互模式特征。这三个方面的特征融合以分层方式计算。

在底层的特征匹配计算中,三个特征都采用了长短期记忆模型(LSTM)。对于表观特征,首先采用VGG-16卷积网络生成500维的特征ϕtA,以这个特征作为LSTM的输入计算循环。

对于运动特征,取相对位移vit为基本输入特征,直接输入LSTM模型计算没时刻的输出ϕi,对于下一时刻的检测同样计算相对位移vjt+1,通过全连接网络计算特征ϕj,类似于表观特征计算500维特征ϕm,并利用二元匹配分类器进行网络的预训练。

对于交互特征,取以目标中心位置周围矩形领域内其他目标所占的相对位置映射图作为LSTM模型的输入特征,计算输出特征ϕi,对于t+1时刻的检测计算类似的相对位置映射图为特征,通过全连接网络计算特征ϕj,类似于运动模型,通过全连接网络计算500维特征ϕI,进行同样的分类训练。

当三个特征ϕA,ϕM,ϕI都计算之后拼接为完整的特征,输入到上层的LSTM网络,对输出的向量进行全连接计算,然后用于匹配分类,匹配正确为1,否则为0。对于最后的网络结构,还需要进行微调,以优化整体网络性能。最后的分类打分看作为相似度用于检测与轨迹目标的匹配计算。最终的跟踪框架采用在线的检测与轨迹匹配方法进行计算。

5)基于双线性长短期循环网络模型的多目标跟踪算法

在对LSTM中各个门函数的设计进行分析之后,Kim等人认为仅仅用基本的LSTM模型对于表观特征并不是最佳的方案,在文献[10]中,Kim等人设计了基于双线性LSTM的表观特征学习网络模型。

除了利用传统的LSTM进行匹配学习,或者类似[5]中的算法,拼接LSTM输出与输入特征,作者设计了基于乘法的双线性LSTM模型,利用LSTM的隐含层特征(记忆)信息与输入的乘积作为特征,进行匹配分类器的学习。

这里对于隐含层特征ht-1,必须先进行重新排列(reshape)操作,然后才能乘以输入的特征向量xt。

其中f表示非线性激活函数,mt是新的特征输入。而原始的检测图像采用ResNet50提取2048维的特征,并通过全连接降为256维。下表中对于不同网络结构、网络特征维度、以及不同LSTM历史长度时,表观特征的学习对跟踪性能的影响做了验证。

可以看出采用双线性LSTM(bilinear LSTM)的表观特征性能最好,此时的历史相关长度最佳为40,这个值远远超过文献[5]中的2-4帧历史长度。相对来说40帧历史信息影响更接近人类的直觉。

J. 双层多目标智能优化算法有哪些

双层多目标智能优化算法有多目标进化算法,多目标粒子群算法,多目标智能优化算法,人工神经网络优化算法,交通与物流系统优化算法。

阅读全文

与多目标算法大全相关的资料

热点内容
腾讯云连接不上服务器 浏览:221
不能用来表示算法的是 浏览:859
6轴机器人算法 浏览:890
手机主题照片在哪个文件夹 浏览:294
安卓手机后期用什么软件调色 浏览:628
cad修改快捷键的命令 浏览:242
好钱包app怎么登录不了 浏览:859
树莓派都用python不用c 浏览:757
access文件夹树的构造 浏览:662
安卓多指操作怎么设置 浏览:658
linux树形目录 浏览:727
平方根的简单算法 浏览:898
千牛订单页面信息加密取消 浏览:558
单片机自制红外遥控灯 浏览:719
服务器最小配置怎么弄 浏览:853
ibm服务器硬件如何升级 浏览:923
全球程序员节点赞 浏览:986
php函数传递数组 浏览:632
人工峰群算法的目标函数 浏览:469
如何删加密文档 浏览:105