导航:首页 > 源码编译 > 现在最安全的加密算法

现在最安全的加密算法

发布时间:2022-12-20 21:38:31

1. 快速了解常用的对称加密算法,再也不用担心面试官的刨根问底

加密算法通常被分为两种: 对称加密 非对称加密 。其中,对称加密算法在加密和解密时使用的密钥相同;非对称加密算法在加密和解密时使用的密钥不同,分为公钥和私钥。此外,还有一类叫做 消息摘要算法 ,是对数据进行摘要并且不可逆的算法。

这次我们了解一下对称加密算法。

对称加密算法在加密和解密时使用的密钥相同,或是使用两个可以简单地相互推算的密钥。在大多数的对称加密算法中,加密和解密的密钥是相同的。

它要求双方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送的信息进行解密,这也是对称加密算法的主要缺点之一。

常见的对称加密算法有:DES算法、3DES算法、AES算法。

DES算法(Data Encryption Standard)是一种常见的分组加密算法。

分组加密算法是将明文分成固定长度的组,每一组都采用同一密钥和算法进行加密,输出也是固定长度的密文。

由IBM公司在1972年研制,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。

在DES算法中,密钥固定长度为64位。明文按64位进行分组,分组后的明文组和密钥按位置换或交换的方法形成密文组,然后再把密文组拼装成密文。

密钥的每个第八位设置为奇偶校验位,也就是第8、16、24、32、40、48、56、64位,所以密钥的实际参与加密的长度为56位。

我们用Java写个例子:

运行结果如下:

DES现在已经不是一种安全的加密方法,主要因为它使用的密钥过短,很容易被暴力破解。

3DES算法(Triple Data Encryption Algorithm)是DES算法的升级版本,相当于是对明文进行了三次DES加密。

由于计算机运算能力的增强,DES算法由于密钥长度过低容易被暴力破解;3DES算法提供了一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

在DES算法中,密钥固定长度为192位。在加密和解密时,密钥会被分为3个64位的密钥。

加密过程如下:

解密过程如下:

我们用Java写个例子:

运行结果如下:

虽然3DES算法在安全性上有所提升,但是因为使用了3次DES算法,加密和解密速度比较慢。

AES(Advanced Encryption Standard,高级加密标准)主要是为了取代DES加密算法的,虽然出现了3DES的加密方法,但由于它的加密时间是DES算法的3倍多,密钥位数还是不能满足对安全性的要求。

1997年1月2号,美国国家标准与技术研究院(NIST)宣布什望征集高级加密标准,用以取代DES。全世界很多密码工作者都提交了自己设计的算法。经过甄选流程,高级加密标准由美国国家标准与技术研究院于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。

该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以 Rijndael 为名投稿高级加密标准的甄选流程。

AES算法的密钥长度是固定,密钥的长度可以使用128位、192位或256位。

AES算法也是一种分组加密算法,其分组长度只能是128位。分组后的明文组和密钥使用几种不同的方法来执行排列和置换运算形成密文组,然后再把密文组拼装成密文。

我们用Java写个例子:

运行结果如下:

AES算法是目前应用最广泛的对称加密算法。

对称加密算法在加密和解密时使用的密钥相同,常见的对称加密算法有:DES算法、3DES算法、AES算法。
由于安全性低、加密解密效率低,DES算法和3DES算法是不推荐使用的,AES算法是目前应用最广泛的对称加密算法。

2. 对称加密算法以及使用方法

加密的原因:保证数据安全

加密必备要素:1、明文/密文    2、秘钥    3、算法

秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度

加密算法解密算法一般互逆、也可能相同

常用的两种加密方式:

对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)

非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高

                    公钥:可以公开出来的密钥、公钥加密私钥解密

                    私钥:需要自己妥善保管、不能公开、私钥加密公钥解密

安全程度高:多次加密

按位异或运算

凯撒密码:加密方式    通过将铭文所使用的字母表按照一定的字数平移来进行加密

mod:取余

加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)

安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分

保证数据的机密性、完整性、认证、不可否认性

计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制

三种对称加密算法:DES\3DES\ AES  

DES:已经被破解、除了用它来解密以前的明文、不再使用

密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit

分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变

3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法   密钥长度24byte、分成三份  加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同  ---加密一次        密钥1秘钥3相同--加密三次    三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况

此时的解密操作与加密操作互逆,安全、效率低

数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法

AES:(首选推荐)底层算法为Rijndael   分组长度为128bit、密钥长度为128bit到256bit范围内就可以   但是在AES中、密钥长度只有128bit\192bit\256bit     在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择

目前为止最安全的、效率高

底层算法

分组密码的模式:

按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假    按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或

ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位

CBC:密码链

问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同

CFB:密文反馈模式

不需要填充最后一个分组、对密文进行加密

OFB:

不需要对最后一组进行填充

CTR计数器:

不需要对最后一组进行填充、不需要初始化向量     

Go中的实现

官方文档中:

在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口

func NewCipher(key [] byte ) ( cipher . Block , error )

type Block interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Encrypt(dst, src []byte)

    // 解密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Decrypt(dst, src []byte)

}

Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。

Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16

如果分组模式选择的是cbc

func NewCBCEncrypter(b Block, iv []byte) BlockMode    加密

func NewCBCDecrypter(b Block, iv []byte) BlockMode    解密

加密解密都调用同一个方法CryptBlocks()

并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小

返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义

返回的BlockMode同样也是一个接口类型

type BlockMode interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址

    CryptBlocks(dst, src []byte)

}

BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器

返回的BlockMode其实是一个cbc的指针类型中的b和iv

# 加密流程: 

1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes 

2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充

3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr

 4. 加密, 得到密文

流程:

填充明文:

先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中

//明文补充

func padPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、求出需要填充的个数

    padNum := blockSize-len(plaintText) % blockSize

    //2、对填充的个数进行操作、与原明文进行合并

    newPadding := []byte{byte(padNum)}

    newPlain := bytes.Repeat(newPadding,padNum)

    plaintText = append(plaintText,newPlain...)

    return plaintText

}

去掉填充数据:

拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回

//解密后的明文曲调补充的地方

func createPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节

    padNum := int(plaintText[len(plaintText)-1])

    newPadding := plaintText[:len(plaintText)-padNum]

    return newPadding

}

des加密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、对明文进行填充

3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象

4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数

//des利用分组模式cbc进行加密

func EncryptoText(plaintText []byte,key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、对明文进行填充

    newText := padPlaintText(plaintText,cipherBlock.BlockSize())

    //3、选择分组模式、其中向量的长度必须与分组长度相同

    iv := make([]byte,cipherBlock.BlockSize())

    blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

des解密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象

3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数

4、调用去掉填充数据的方法

//des利用分组模式cbc进行解密

func DecryptoText(cipherText []byte, key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc分组模式接口

    iv := []byte("12345678")

    blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)

    //3、解密

    blockMode.CryptBlocks(cipherText,cipherText)

    //4、将解密后的数据进行去除填充的数据

    newText := clearPlaintText(cipherText,cipherBlock.BlockSize())

    return newText

}

Main函数调用

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +

        "(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("1234abcd")

    //调用加密函数

    cipherText := EncryptoText(plaintText,key)

    newPlaintText := DecryptoText(cipherText,key)

    fmt.Println(string(newPlaintText))

}

AES加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密

推荐是用分组模式:cbc、ctr

aes利用分组模式cbc进行加密

//对明文进行补充

func paddingPlaintText(plaintText []byte , blockSize int ) []byte {

    //1、求出分组余数

    padNum := blockSize - len(plaintText) % blockSize

    //2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片

    padByte := bytes.Repeat([]byte{byte(padNum)},padNum)

    //3、将补充的字节切片添加到原明文中

    plaintText = append(plaintText,padByte...)

    return plaintText

}

//aes加密

func encryptionText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、明文补充

    newText := paddingPlaintText(plaintText,block.BlockSize())

    //3、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCEncrypter(block,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

//解密后的去尾

func clearplaintText(plaintText []byte, blockSize int) []byte {

    //1、得到最后一个字节、并转换成整型数据

    padNum := int(plaintText[len(plaintText)-1])

    //2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum

    newText := plaintText[:len(plaintText)-padNum]

    return newText

}

//aes解密

func deCryptionText(crypherText []byte, key []byte ) []byte {

    //1、创建aes对象

    block, err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCDecrypter(block,iv)

    //3、解密

    blockMode.CryptBlocks(crypherText,crypherText)

    //4、去尾

    newText := clearplaintText(crypherText,block.BlockSize())

    return newText

}

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("12345678abcdefgh")

    //调用加密函数

    cipherText := encryptionText(plaintText,key)

    //调用解密函数

    newPlaintText := deCryptionText(cipherText,key)

    fmt.Println("解密后",string(newPlaintText))

}

//aes--ctr加密

func encryptionCtrText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv

    iv := []byte("12345678abcdefgh")

    stream := cipher.NewCTR(block,iv)

    stream.XORKeyStream(plaintText,plaintText)

    return plaintText

}

func main() {

//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream

    ctrcipherText := encryptionCtrText(plaintText, key)

    ctrPlaintText := encryptionCtrText(ctrcipherText,key)

    fmt.Println("aes解密后", string(ctrPlaintText))

}

英文单词:

明文:plaintext     密文:ciphertext   填充:padding/fill    去掉clear  加密Encryption  解密Decryption

3. 密码两个傻×是什么

双钥密码算法,又称公钥密码算法:是指加密密钥和解密密钥为两个不同密钥的密码算法。公钥密码算法不同于单钥密码算法,它使用了一对密钥:一个用于加密信息,另一个则用于解密信息,通信双方无需事先交换密钥就可进行保密通信。其中加密密钥不同于解密密钥,加密密钥公之于众,谁都可以用;解密密钥只有解密人自己知道。这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。若以公钥作为加密密钥,以用户专用密钥(私钥)作为解密密钥,则可实现多个用户加密的信息只能由一个用户解读;反之,以用户私钥作为加密密钥而以公钥作为解密密钥,则可实现由一个用户加密的信息而多个用户解读。前者可用于数字加密,后者可用于数字签名。
在通过网络传输信息时,公钥密码算法体现出了单密钥加密算法不可替代的优越性。对于参加电子交易的商户来说,希望通过公开网络与成千上万的客户进行交易。若使用对称密码,则每个客户都需要由商户直接分配一个密码,并且密码的传输必须通过一个单独的安全通道。相反,在公钥密码算法中,同一个商户只需自己产生一对密钥,并且将公开钥对外公开。客户只需用商户的公开钥加密信息,就可以保证将信息安全地传送给商户。
公钥密码算法中的密钥依据性质划分,可分为公钥和私钥两种。用户产生一对密钥,将其中的一个向外界公开,称为公钥;另一个则自己保留,称为私钥。凡是获悉用户公钥的任何人若想向用户传送信息,只需用用户的公钥对信息加密,将信息密文传送给用户便可。因为公钥与私钥之间存在的依存关系,在用户安全保存私钥的前提下,只有用户本身才能解密该信息,任何未受用户授权的人包括信息的发送者都无法将此信息解密。
RSA公钥密码算法是一种公认十分安全的公钥密码算法。它的命名取自三个创始人:Rivest、Shamir和Adelman。RSA公钥密码算法是网络上进行保密通信和数字签名的最有效的安全算法。RSA算法的安全性基于数论中大素数分解的困难性,所以,RSA需采用足够大的整数。因子分解越困难,密码就越难以破译,加密强度就越高。
RSA既能用于加密又能用于数字签名,在已提出的公开密钥算法中,RSA最容易理解和实现的,这个算法也是最流行的。RSA的安全基于大数分解的难度。其公开密钥和私人密钥是一对大素数(100到200个十进制数或更大)的函数。从一个公开密钥和密文中恢复出明文的难度等价于分解两个大素数之积。为了产生两个密钥,选取两个大素数,p和q。为了获得最大程度的安全性,两数的长度一样。计算乘积: ,然后随机选取加密密钥e,使e和(p-1)(q-1)互素。最后用欧几里得扩展算法计算解密密钥d,以满足
则,
注意:d和n也互素。e和n是公开密钥,d是私人密钥。两个素数p和q不再需要,它们应该被舍弃,但绝不可泄露。
加密消息m时,首先将它分成比n小的数据分组(采用二进制数,选取小于n的2的最大次幂),也就是说,p和q为100位的素数,那么n将有200位,每个消息分组 应小于200位长。加密后的密文c,将由相同长度的分组 组成。加密公式简化为
解密消息时,取每一个加密后的分组ci并计算:
由于: ,全部(mod n)这个公式能恢复出明文。
公开密钥 n:两素数p和q的乘积(p和q必须保密) e:与(p-1)(q-1)互素

4. 常见的加密算法、原理、优缺点、用途

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。

1.对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方

2.接收方收到加密后的报文后,结合解密算法使用相同密钥解密组合后得出原始数据。

图示:

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥(不能公开)才能解密,反之亦然。N 个用户通信,需要2N个密钥。

非对称密钥加密适合对密钥或身份信息等敏感信息加密,从而在安全性上满足用户的需求。

1.甲使用乙的公钥并结合相应的非对称算法将明文加密后发送给乙,并将密文发送给乙。
2.乙收到密文后,结合自己的私钥和非对称算法解密得到明文,得到最初的明文。

图示:

单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应(少量消息位的变化会引起信息摘要的许多位变化)。

单向加密算法常用于提取数据指纹,验证数据的完整性、数字摘要、数字签名等等。

1.发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。

2.接收方将用于比对验证的明文使用相同的单向加密算法进行加密,得出加密后的密文串。

3.将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。

图示:

MD5、sha1、sha224等等

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密

常见的密钥交换方式有下面两种:

将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用

DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。

DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。

如:

安全性

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

答案:使用公钥证书

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合

用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能

签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。

公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

1.客户A准备好要传送的数字信息(明文)。(准备明文)

2.客户A对数字信息进行哈希(hash)运算,得到一个信息摘要。(准备摘要)

3.客户A用CA的私钥(SK)对信息摘要进行加密得到客户A的数字签名,并将其附在数字信息上。(用私钥对数字信息进行数字签名)

4.客户A随机产生一个加密密钥(DES密钥),并用此密钥对要发送的信息进行加密,形成密文。 (生成密文)

5.客户A用双方共有的公钥(PK)对刚才随机产生的加密密钥进行加密,将加密后的DES密钥连同密文一起传送给乙。(非对称加密,用公钥对DES密钥进行加密)

6.银行B收到客户A传送过来的密文和加过密的DES密钥,先用自己的私钥(SK)对加密的DES密钥进行解密,得到DES密钥。(用私钥对DES密钥解密)

7.银行B然后用DES密钥对收到的密文进行解密,得到明文的数字信息,然后将DES密钥抛弃(即DES密钥作废)。(解密文)

8.银行B用双方共有的公钥(PK)对客户A的数字签名进行解密,得到信息摘要。银行B用相同的hash算法对收到的明文再进行一次hash运算,得到一个新的信息摘要。(用公钥解密数字签名)

9.银行B将收到的信息摘要和新产生的信息摘要进行比较,如果一致,说明收到的信息没有被修改过。(对比信息摘要和信息)

答案是没法保证CA的公钥没有被篡改。通常操作系统和浏览器会预制一些CA证书在本地。所以发送方应该去那些通过认证的CA处申请数字证书。这样是有保障的。

但是如果系统中被插入了恶意的CA证书,依然可以通过假冒的数字证书发送假冒的发送方公钥来验证假冒的正文信息。所以安全的前提是系统中不能被人插入非法的CA证书。

END

5. aes加密安全吗

AES算法作为DES算法和MD5算法的替代产品,10轮循环到目前为止还没有被破解。一般多数人的意见是:它是目前可获得的最安全的加密算法。AES与目前使用广泛的加密算法─DES算法的差别在于,如果一秒可以解DES,则仍需要花费1490000亿年才可破解AES,由此可知AES的安全性。AES 已被列为比任何现今其它对称加密算法更安全的一种算法。

阅读全文

与现在最安全的加密算法相关的资料

热点内容
php开发客户端 浏览:986
theisle测试服怎么搜服务器 浏览:445
广播PDF 浏览:216
单片机编程300例汇编百度 浏览:33
腾讯云连接不上服务器 浏览:221
不能用来表示算法的是 浏览:859
6轴机器人算法 浏览:890
手机主题照片在哪个文件夹 浏览:294
安卓手机后期用什么软件调色 浏览:628
cad修改快捷键的命令 浏览:242
好钱包app怎么登录不了 浏览:859
树莓派都用python不用c 浏览:757
access文件夹树的构造 浏览:662
安卓多指操作怎么设置 浏览:658
linux树形目录 浏览:727
平方根的简单算法 浏览:898
千牛订单页面信息加密取消 浏览:558
单片机自制红外遥控灯 浏览:719
服务器最小配置怎么弄 浏览:853
ibm服务器硬件如何升级 浏览:923