导航:首页 > 源码编译 > 弗洛伊德算法矩阵

弗洛伊德算法矩阵

发布时间:2022-12-22 09:11:40

‘壹’ 每一对顶点之间的最短路径是什么

每一对顶点之间的最短路径是指对于给定的带权有向图G=(v,E),要对G中任意一对顶点有序对(vi,vj)(vi≠vj),找出vi到vj的最短距离和vj到vi的最短距离。

解决此问题的一个有效方法是:轮流以每一个顶点为源点,重复执行Dijkstra算法n次,即可求得有向图G=(v,E)中每一对顶点间的最短路径,总的时间复杂度为0(n2)。

弗洛伊德(Floyd)提出了另一个求任意两顶点之间最短路径的算法,虽然其时间复杂度也是0(n2),但算法形式更为简明,易于理解与编程

1.弗洛伊德算法的思想弗洛伊德算法是从图的邻接矩阵开始,按照顶点v0,v1,v2,v2,…,vn的次序,分别以每个顶点vk(0≤k<n)作为新考虑的中间点,在第k-1次运算D(k-1)的基础上,求出每一对顶点之间vi到vj的最短路径长度D(k)[i][j],计算公式为:

D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}重复执行n次后,D(k)[i][j]中保留的值就是每对顶点的vi到vj的最短路径长度。

2.弗洛伊德算法的步骤(1)从图的带权邻接矩阵G.arcs[][]开始,即D(-1)=arcs[][],每次以上一次D(k-1)为基础,用公式D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}计算出D(k)[i][j]的值,即D(k-1)[i][k]+D(k-1)[k][j]<D(k-1)[i][j]才修改,若D(k)[i][j]修改过,则相应的路径P(k)[i][j]也要作相应的修改,即P(k)[i][j]=P(k-1)[i][k]+P(k-1)[k][j]。

(2)重复上述过程n次后,D(k)[i][j]中保存的就是每一对顶点的最短路径长度,P(k)[i][j]中保存的就是每一对顶点的最短路径。

说明:从计算公式可以看出,i=j是对角线上的元素;i=k是i行上的元素;j=k是j列上的元素,这些特殊的顶点不用计算,保留原来的数据值。因此,计算的数据元素减少了很多。

‘贰’ floyd算法 是动态规划的思想吗

1.定义概览
Floyd-Warshall算法(Floyd-Warshall
algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k)
+
Dis(k,j)
<
Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j)
=
Dis(i,k)
+
Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

b.对于每一对顶...
1.定义概览
Floyd-Warshall算法(Floyd-Warshall
algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k)
+
Dis(k,j)
<
Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j)
=
Dis(i,k)
+
Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

b.对于每一对顶点
u

v,看看是否存在一个顶点
w
使得从
u

w
再到
v
比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角
如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

‘叁’ Floyd算法的算法过程

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

‘肆’ floyd算法计算最短距离时,赋权邻接矩阵怎么算

Model:
!2个工厂,3个中转站及4个客户的运输问题;
sets:
plant/A,B/:proce;
warhouse/x,y,z/;
costomer/1..4/:require;
link(plant, warhouse,costomer):poss,cost,x;
endsets
data:
proce=9,8;
require=3,4,3,5;
!邻接矩阵;
poss = 1 1 0 0 !A-x-1,A-x-2,A-x-3,A-x-4;
1 1 1 0 !A-y-1,A-y-2,A-y-3,A-y-4;
0 0 0 0 !A-z-1,A-z-2,A-z-3,A-z-4;
0 1 0 0 !B-x-1,B-x-2,B-x-3,B-x-4;
1 1 1 0 !B-y-1,B-y-2,B-y-3,B-y-4;
0 1 1 1; !B-z-1,B-z-2,B-z-3,B-z-4;
!赋权矩阵;
cost=6 8 0 0
11 8 9 0
0 0 0 0
8 10 0 0
10 7 8 0
0 10 9 6;
enddata
!目标函数;
min=@sum(link:poss*cost*x);
!约束条件;
@for(plant(i):@sum(warhouse(j): @sum(costomer(k):poss(i,j,k)*x(i,j,k)))<proce(i));
!对于厂家I,运出的从”I-J-K”的运量不超过该厂的产量;
@for(costomer(k) :@sum(plant(i):@sum(warhouse(j): poss(i,j,k)*x(i,j,k)))=require(k));
! 对于客户K,运入的从”I-J-K”的运量不超过该客户的需求量;
end
①邻接矩阵,两个厂家,则分两组;3个中转站,则每组3行;即共有2*3=6行;
第一组指的是从“厂家A”运出的,第二组指的是从“厂家B”运出的.
第一行表示通过中转站X,第二行表示通过中转站Y,第三行表示通过中转站Z;
第一列表示到达客户1,第二列表示到达客户2,第三列表示到达客户3,第4列表示到达客户4.
如poss24属于第一组的第2行第4列的元素,则表示从A-y-4的运输情况.
②赋权矩阵,指的是相应的线路对应的权重和(运费之和).

‘伍’ Floyd算法中的矩阵就是邻接矩阵么

是的。邻接矩阵。存储联通状态的。

‘陆’ floyd如何判断有多条最短路径

1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

3.算法代码实现:

const int MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];

int A[MAXUNM][MAXNUM];

void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
for(int i=1; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用过该点
if(dist[i] == MAXINT)
prev[i] = -1;
else
prev[i] = v0;
}
dist[v0] = 0;
S[v0] = true;
for(int i=2; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u保存当前邻接点中距离最小的点的号码
mindist = dist[j];
}
S[u] = true;
for(int j=1; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //记录前驱顶点
}
}
}
}

4.算法实例
先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

3.算法代码实现

typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;

void Floyd(MGraph g)
{
int A[MAXV][MAXV];
int path[MAXV][MAXV];
int i,j,k,n=g.n;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-1;
}
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(A[i][j]>(A[i][k]+A[k][j]))
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
}

‘柒’ matlab floyd 算法注释

A矩阵是邻接矩阵,对角线上为o,其余位置数字表示的是两点之间距离,比如A(1,2)=2,表示从第一个点到第二个点的距离为2.inf是无穷大的意思,这里表示没有直接沟通这两点的路。
n=length(D);设定n为D矩阵的长度。
接下来的两重循环,得到的R矩阵是n*n的矩阵,它每个数据表示的是路径,比如:R(1,3)=1;表示路径为:1-1-3.这里是初始化路径了。
后面的三重循环是floyd算法的关键所在,就是更新路线了。里面的那个判断指的是:
假设有3个点,1
2
3;如果我从1-2-3之间总距离小于1-3的距离,那么我R(1,3)=2;这就是选取更近的路线了。
最后的两个判断是为了不让曾经走过的点再次被遍历。就是不回头的意思了,这个一般都可以忽略了,你照打上去就是了。
不知道这样的解释你是否满意。

‘捌’ 求弗洛伊德算法的详细解释~

floyd算法思想:1,构建一个邻接矩阵存储任意两点之间的权值如图D0.

2、例如求v1,v4之间的最短路径。先增加v2做中间顶点,D[1][4]=∞。if(D[1][4]>D[1][2]+D[2]4])=6+4)D[1][4]=10;这样就可以了。

3、如不能在离得较远的两点(例v1,v9)直接得到上述可以满足if的中间点,则跟据你书本的代码可以先构建原点到中间点的最短路径,继而就可以求得vi,v9之间的最短路径

‘玖’ floyd算法能不能保证有最优解

Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。

算法过程:

把图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。

定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。

在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

‘拾’ 利用FLOYD求出的path矩阵怎么看

这是一个我写的Floyd算法的程序。w是图的邻接矩阵需要事先输入并保存在工作空间中,调用方法为:[D,path]=floyd(w)。给出的结果D为路径的邻接矩阵,path为路径所经过的端点顺序。

程序为:
<pre t="code" l="cpp">function [D,path]=floyd(w)
%D R a
n=size(w,1);
%设初值
D=w;
path=zeros(n);
for i=1:n
for j=1:n
if D(i,j)~=inf
path(i,j)=j;
end
end
end
%迭代,更新D path
for k=1:n
for i=1:n
for j=1:n
if D(i,k)+D(k,j)<D(i,j)
D(i,j)=D(i,k)+D(k,j);
path(i,j)=path(i,k);
end
end
end
end

阅读全文

与弗洛伊德算法矩阵相关的资料

热点内容
6轴机器人算法 浏览:890
手机主题照片在哪个文件夹 浏览:294
安卓手机后期用什么软件调色 浏览:628
cad修改快捷键的命令 浏览:242
好钱包app怎么登录不了 浏览:859
树莓派都用python不用c 浏览:757
access文件夹树的构造 浏览:662
安卓多指操作怎么设置 浏览:658
linux树形目录 浏览:727
平方根的简单算法 浏览:898
千牛订单页面信息加密取消 浏览:558
单片机自制红外遥控灯 浏览:719
服务器最小配置怎么弄 浏览:853
ibm服务器硬件如何升级 浏览:923
全球程序员节点赞 浏览:986
php函数传递数组 浏览:632
人工峰群算法的目标函数 浏览:468
如何删加密文档 浏览:105
涂鸦app一键执行如何删除 浏览:756
安卓手机如何打开fr3文件 浏览:743