A. Xoreax IncrediBuild安装过程
IncrediBuild是一款分布式编程开发工具,能够加速C/C++ 的编译和创建。特别是在大型C/C++项目中,采用IncrediBuild的多线程处理技术,不必改变项目文件的代码,在编译过程中自动查找局域网中空闲的CPU,并将源文件发到空闲CPU一起编译,加快项目90%的编译速度。
IncrediBuild需要分别在服务端(Coordinator)和客户端(Agent)进行安装。
1、服务端(Coordinator)的安装
运行IncrediBuild安装程序,选择Install IncrediBuild,点击Next下一步,继续下一步,在安装组件选择窗口(Component Selection)钩选IncrediBuild Coordinator。安装组件选择窗口,还可以不选择服务端参与编译,把IncrediBuild Agent前的钩点掉就可以了。
B. 在个人电脑上怎么进行分布式编译服务器的安装
方法一:直接在命令行安装
~$ aptitude install distcc
方法二: 下载distc,解压,编译安装如下:
~$ wgethttp://distcc.samba.org/ftp/distcc/distcc-2.18.3.tar.bz2
~$ tar-jxf distcc-2.18.3.tar.bz2
~$ cddistcc-2.18.3
~$./configure && make && sudo make install
C. android系统编译能用分布式编译吗
项目越来越大,每次需要重新编译整个项目都是一件很浪费时间的事情。Research了一下,找到以下可以帮助提高速度的方法,总结一下。
1. 使用tmpfs来代替部分IO读写
2.ccache,可以将ccache的缓存文件设置在tmpfs上,但是这样的话,每次开机后,ccache的缓存文件会丢失
3.distcc,多机器编译
4.将屏幕输出打印到内存文件或者/dev/null中,避免终端设备(慢速设备)拖慢速度。
tmpfs
有人说在Windows下用了RAMDisk把一个项目编译时间从4.5小时减少到了5分钟,也许这个数字是有点夸张了,不过粗想想,把文件放到内存上做编译应该是比在磁盘上快多了吧,尤其如果编译器需要生成很多临时文件的话。
这个做法的实现成本最低,在linux中,直接mount一个tmpfs就可以了。而且对所编译的工程没有任何要求,也不用改动编译环境。
mount -t tmpfs tmpfs ~/build -o size=1G
用2.6.32.2的Linux Kernel来测试一下编译速度:
用物理磁盘:40分16秒
用tmpfs:39分56秒
呃……没什么变化。看来编译慢很大程度上瓶颈并不在IO上面。但对于一个实际项目来说,编译过程中可能还会有打包等IO密集的操作,所以只要可能,用tmpfs是有益无害的。当然对于大项目来说,你需要有足够的内存才能负担得起这个tmpfs的开销。
make -j
既然IO不是瓶颈,那CPU就应该是一个影响编译速度的重要因素了。
用make -j带一个参数,可以把项目在进行并行编译,比如在一台双核的机器上,完全可以用make -j4,让make最多允许4个编译命令同时执行,这样可以更有效的利用CPU资源。
还是用Kernel来测试:
用make: 40分16秒
用make -j4:23分16秒
用make -j8:22分59秒
由此看来,在多核CPU上,适当的进行并行编译还是可以明显提高编译速度的。但并行的任务不宜太多,一般是以CPU的核心数目的两倍为宜。
不过这个方案不是完全没有cost的,如果项目的Makefile不规范,没有正确的设置好依赖关系,并行编译的结果就是编译不能正常进行。如果依赖关系设置过于保守,则可能本身编译的可并行度就下降了,也不能取得最佳的效果。
ccache
ccache工作原理:
ccache也是一个编译器驱动器。第一趟编译时ccache缓存了GCC的“-E”输出、编译选项以及.o文件到$HOME/.ccache。第二次编译时尽量利用缓存,必要时更新缓存。所以即使"make clean; make"也能从中获得好处。ccache是经过仔细编写的,确保了与直接使用GCC获得完全相同的输出。
ccache用于把编译的中间结果进行缓存,以便在再次编译的时候可以节省时间。这对于玩Kernel来说实在是再好不过了,因为经常需要修改一些Kernel的代码,然后再重新编译,而这两次编译大部分东西可能都没有发生变化。对于平时开发项目来说,也是一样。为什么不是直接用make所支持的增量编译呢?还是因为现实中,因为Makefile的不规范,很可能这种“聪明”的方案根本不能正常工作,只有每次make clean再make才行。
安装完ccache后,可以在/usr/local/bin下建立gcc,g++,c++,cc的symbolic link,链到/usr/bin/ccache上。总之确认系统在调用gcc等命令时会调用到ccache就可以了(通常情况下/usr/local /bin会在PATH中排在/usr/bin前面)。
安装的另外一种方法:
vi ~/.bash_profile
把/usr/lib/ccache/bin路径加到PATH下
PATH=/usr/lib/ccache/bin:$PATH:$HOME/bin
这样每次启动g++的时候都会启动/usr/lib/ccache/bin/g++,而不会启动/usr/bin/g++
效果跟使用命令行ccache g++效果一样
这样每次用户登录时,使用g++编译器时会自动启动ccache
继续测试:
用ccache的第一次编译(make -j4):23分38秒
用ccache的第二次编译(make -j4):8分48秒
用ccache的第三次编译(修改若干配置,make -j4):23分48秒
看来修改配置(我改了CPU类型...)对ccache的影响是很大的,因为基本头文件发生变化后,就导致所有缓存数据都无效了,必须重头来做。但如果只是修改一些.c文件的代码,ccache的效果还是相当明显的。而且使用ccache对项目没有特别的依赖,布署成本很低,这在日常工作中很实用。
可以用ccache -s来查看cache的使用和命中情况:
cache directory /home/lifanxi/.ccachecache hit 7165cache miss 14283called for link 71not a C/C++ file 120no input file 3045files in cache 28566cache size 81.7 Mbytesmax cache size 976.6 Mbytes
可以看到,显然只有第二编次译时cache命中了,cache miss是第一次和第三次编译带来的。两次cache占用了81.7M的磁盘,还是完全可以接受的。
distcc
一台机器的能力有限,可以联合多台电脑一起来编译。这在公司的日常开发中也是可行的,因为可能每个开发人员都有自己的开发编译环境,它们的编译器版本一般是一致的,公司的网络也通常具有较好的性能。这时就是distcc大显身手的时候了。
使用distcc,并不像想象中那样要求每台电脑都具有完全一致的环境,它只要求源代码可以用make -j并行编译,并且参与分布式编译的电脑系统中具有相同的编译器。因为它的原理只是把预处理好的源文件分发到多台计算机上,预处理、编译后的目标文件的链接和其它除编译以外的工作仍然是在发起编译的主控电脑上完成,所以只要求发起编译的那台机器具备一套完整的编译环境就可以了。
distcc安装后,可以启动一下它的服务:
/usr/bin/distccd --daemon --allow 10.64.0.0/16
默认的3632端口允许来自同一个网络的distcc连接。
然后设置一下DISTCC_HOSTS环境变量,设置可以参与编译的机器列表。通常localhost也参与编译,但如果可以参与编译的机器很多,则可以把localhost从这个列表中去掉,这样本机就完全只是进行预处理、分发和链接了,编译都在别的机器上完成。因为机器很多时,localhost的处理负担很重,所以它就不再“兼职”编译了。
export DISTCC_HOSTS="localhost 10.64.25.1 10.64.25.2 10.64.25.3"
然后与ccache类似把g++,gcc等常用的命令链接到/usr/bin/distcc上就可以了。
在make的时候,也必须用-j参数,一般是参数可以用所有参用编译的计算机CPU内核总数的两倍做为并行的任务数。
同样测试一下:
一台双核计算机,make -j4:23分16秒
两台双核计算机,make -j4:16分40秒
两台双核计算机,make -j8:15分49秒
跟最开始用一台双核时的23分钟相比,还是快了不少的。如果有更多的计算机加入,也可以得到更好的效果。
在编译过程中可以用distccmon-text来查看编译任务的分配情况。distcc也可以与ccache同时使用,通过设置一个环境变量就可以做到,非常方便。
总结一下:
tmpfs: 解决IO瓶颈,充分利用本机内存资源
make -j: 充分利用本机计算资源
distcc: 利用多台计算机资源
ccache: 减少重复编译相同代码的时间
这些工具的好处都在于布署的成本相对较低,综合利用这些工具,就可以轻轻松松的节省相当可观的时间。上面介绍的都是这些工具最基本的用法,更多的用法可以参考它们各自的man page。
5.还有提速方法是把屏幕输出重定向到内存文件或/dev/null,因对终端设备(慢速设备)的阻塞写操作也会拖慢速度。推荐内存文件,这样发生错误时,能够查看。
D. 如何部署hadoop分布式文件系统
一、实战环境
系统版本:CentOS 5.8x86_64
java版本:JDK-1.7.0_25
Hadoop版本:hadoop-2.2.0
192.168.149.128namenode (充当namenode、secondary namenode和ResourceManager角色)
192.168.149.129datanode1 (充当datanode、nodemanager角色)
192.168.149.130datanode2 (充当datanode、nodemanager角色)
二、系统准备
1、Hadoop可以从Apache官方网站直接下载最新版本Hadoop2.2。官方目前是提供了linux32位系统可执行文件,所以如果需要在64位系统上部署则需要单独下载src 源码自行编译。(如果是真实线上环境,请下载64位hadoop版本,这样可以避免很多问题,这里我实验采用的是32位版本)
1234 Hadoop
Java
2、我们这里采用三台CnetOS服务器来搭建Hadoop集群,分别的角色如上已经注明。
第一步:我们需要在三台服务器的/etc/hosts里面设置对应的主机名如下(真实环境可以使用内网DNS解析)
[root@node1 hadoop]# cat /etc/hosts
# Do not remove the following line, or various programs
# that require network functionality will fail.
127.0.0.1localhost.localdomain localhost
192.168.149.128node1
192.168.149.129node2
192.168.149.130node3
(注* 我们需要在namenode、datanode三台服务器上都配置hosts解析)
第二步:从namenode上无密码登陆各台datanode服务器,需要做如下配置:
在namenode 128上执行ssh-keygen,一路Enter回车即可。
然后把公钥/root/.ssh/id_rsa.pub拷贝到datanode服务器即可,拷贝方法如下:
ssh--id -i .ssh/id_rsa.pub [email protected]
ssh--id -i .ssh/id_rsa.pub [email protected]
三、Java安装配置
tar -xvzf jdk-7u25-linux-x64.tar.gz &&mkdir -p /usr/java/ ; mv /jdk1.7.0_25 /usr/java/ 即可。
安装完毕并配置java环境变量,在/etc/profile末尾添加如下代码:
export JAVA_HOME=/usr/java/jdk1.7.0_25/
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=$JAVE_HOME/lib/dt.jar:$JAVE_HOME/lib/tools.jar:./
保存退出即可,然后执行source /etc/profile 生效。在命令行执行java -version 如下代表JAVA安装成功。
[root@node1 ~]# java -version
java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)
(注* 我们需要在namenode、datanode三台服务器上都安装Java JDK版本)
四、Hadoop版本安装
官方下载的hadoop2.2.0版本,不用编译直接解压安装就可以使用了,如下:
第一步解压:
tar -xzvf hadoop-2.2.0.tar.gz &&mv hadoop-2.2.0/data/hadoop/
(注* 先在namenode服务器上都安装hadoop版本即可,datanode先不用安装,待会修改完配置后统一安装datanode)
第二步配置变量:
在/etc/profile末尾继续添加如下代码,并执行source /etc/profile生效。
export HADOOP_HOME=/data/hadoop/
export PATH=$PATH:$HADOOP_HOME/bin/
export JAVA_LIBRARY_PATH=/data/hadoop/lib/native/
(注* 我们需要在namenode、datanode三台服务器上都配置Hadoop相关变量)
五、配置Hadoop
在namenode上配置,我们需要修改如下几个地方:
1、修改vi /data/hadoop/etc/hadoop/core-site.xml 内容为如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.149.128:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop-${user.name}</value>
<description>A base forother temporary directories.</description>
</property>
</configuration>
2、修改vi /data/hadoop/etc/hadoop/mapred-site.xml内容为如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>192.168.149.128:9001</value>
</property>
</configuration>
3、修改vi /data/hadoop/etc/hadoop/hdfs-site.xml内容为如下:
<?xml version="1.0"encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" /name>
<value>/data/hadoop/data_name1,/data/hadoop/data_name2</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/data/hadoop/data_1,/data/hadoop/data_2</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>
4、在/data/hadoop/etc/hadoop/hadoop-env.sh文件末尾追加JAV_HOME变量:
echo "export JAVA_HOME=/usr/java/jdk1.7.0_25/">> /data/hadoop/etc/hadoop/hadoop-env.sh
5、修改 vi /data/hadoop/etc/hadoop/masters文件内容为如下:
192.168.149.128
6、修改vi /data/hadoop/etc/hadoop/slaves文件内容为如下:
192.168.149.129
192.168.149.130
如上配置完毕,以上的配置具体含义在这里就不做过多的解释了,搭建的时候不明白,可以查看一下相关的官方文档。
如上namenode就基本搭建完毕,接下来我们需要部署datanode,部署datanode相对简单,执行如下操作即可。
1 fori in`seq 129130` ; doscp -r /data/hadoop/ [email protected].$i:/data/ ; done
自此整个集群基本搭建完毕,接下来就是启动hadoop集群了。
E. k8s分布式存储-Ceph
RADOS
Librados
Crush
Pool
PG
Object
Pool、PG和OSD的关系
OSD
块存储( RBD )
文件存储( CephFS )
对象存储( Object )
关闭防火墙
关闭selinux
关闭 swap
根据规划设置主机名
添加 hosts
设置文件描述符
时间同步
配置 SSH 免交互认证
1、创建rbd使用的pool
2、指定存储池使用存储类型
3、创建一个块设备
3、查看块设备
1、禁用当前系统内核不支持的feature
2、映射(任意节点操作)
3、格式化块设备
4、mount到本地
5、取消块设备和内核映射
6、删除RBD块设备
1、拷贝配置文件和秘钥
2、安装 Ceph 客户端
3、剩余操作就与本地挂载操作一样了
1、创建快照
2、列出创建的快照
3、还原快照
4、重新映射并挂载验证
5、删除快照
1、创建一个块设备
2、创建快照
3、设置快照处于被保护状态
4、通过快照克隆一个新块设备
5、将克隆的快照独立于父设备
挂载本地目录
fuse方式挂载
**全部统一命名空间到 ceph-csi **
k8s节点安装 Ceph 客户端
csi-config-map.yaml
storageclass
secret
启动验证
rbd-pod-test.yaml
测试
**全部统一命名空间到 ceph-csi **
k8s节点安装 Ceph 客户端
csi-config-map
storageclass
secret
启动验证
ceph-cephfs-test
测试
F. 基于mogileFS搭建分布式文件系统--海量小文件的存储利器
1.简介
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。
当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。
传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。
然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。
2.分布式文件系统的一些解决方案
Google Filesystem适合存储海量大个文件,元数据存储与内存中
HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件
TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS
擅长存储海量的小数据,元数据存储与关系型数据库中
1.简介
MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。
目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.
国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 薯仔, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。
2.MogileFS特性
1) 应用层提供服务,不需要使用核心组件
2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)
3)自动复制文件,复制文件的最小单位不是文件,而是class
4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信
5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现
6)不用共享任何数据
3.MogileFS的组成
1)Tracker--跟踪器,调度器
MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个"query workers"中,然后让 mogilefs的子进程去处理.
mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,
tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口
2)Database--数据库部分
主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用
3)mogstored--存储节点
数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.
典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.
配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口
4.基本工作流程
应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.
tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。
应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).
应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.
tracker 将该名称和域命的名空间关联 (通过数据库来做的)
tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则
然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.
应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)
1.拓扑图
说明:1.用户通过URL访问前端的nginx
2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求
3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx
4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求
5.mogstored将结果返回给nginx
6.nginx构建响应报文返回给客户端
2.ip规划
角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1
mogilefs192.168.1.202存储节点与调度节点2
mogilefs192.168.1.203数据库节点
MariaDB192.168.1.204
3.数据库的安装操作并为授权
关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql
4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装
5.初始化数据库
可以看到在数据库中创建了一些表
6.修改配置文件,启动服务
7.配置mogilefs
添加存储主机
添加存储设备
添加域
添加class
8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样
9.尝试上传数据,获取数据,客户端读取数据
上传数据,在任何一个节点上传都可以
获取数据
客户端查看数据
我们可以通过任何一个节点查看到数据
要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现
1.编译安装nginx
2.准备启动脚本
3.nginx与mofilefs互联
查看效果
5.配置后端truckers的集群
查看效果
大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群
G. 如何实现高性能分布式文件存储
其实分布式文件存储,最复杂的就是元数据的保存和处理,而我使用的XGFS文件存储软件只需要三个全闪存元数据高可用节点,就可以高效保存和处理 100 亿文件规模的数据,可以灵活扩展。【感兴趣的话点击此处,免费了解一下】
存储服务器通常是独立的单元。有的时候它们会被设计成4U机架式。或者,它们也可以由两个箱子组成一个存储单元以及一个位于附近的服务器。然后两个箱子可以并行地安装在机柜中。像Sun StorEdge 3120 存储单元和SunFire X4100服务器,就可以合并为一个存储服务器并放置在一个机柜中。
亿万克研发高性能 MCA 移动网络信息终端产品,荣获“国家重点新产品证书”,并在同年成为英特尔嵌入式联盟 (Intel Embedded Alliance) 的 Associate 级会员、微软嵌入式全球金牌合作伙伴,开启服务器研究领域新征程。亿万克亚当R322N6是一款搭载英特尔第三代至强可扩展系列处理器的2U双路虚拟化计算型服务器,计算性能强,性能稳定,拥有优异的整机输出性能。
H. CentOS 7部署 Ceph分布式存储架构
随着OpenStack日渐成为开源云计算的标准软件栈,Ceph也已经成为OpenStack的首选后端存储。Ceph是一种为优秀的性能、可靠性和可扩展性而设计的统一的、分布式文件系统。
Ceph是一个开源的分布式文件系统。因为它还支持块存储、对象存储,所以很自然的被用做云计算框架openstack或cloudstack整个存储后端。当然也可以单独作为存储,例如部署一套集群作为对象存储、SAN存储、NAS存储等。
前三台服务器增加一块硬盘/dev/sdb实验, 创建目录并挂载到/var/local/osd{1,2,3};
规范系统主机名添加hosts文件实现集群主机名与主机名之间相互能够解析(host 文件添加主机名不要使用fqdn方式)可用 hostnamectl set-hostname [name] 设置分别打开各节点的 /etc/hosts 文件,加入这四个节点ip与名称的对应关系:
在管理节点使用ssh-keygen 生成ssh keys 发布到各节点
第一步:增加 yum配置文件(各个节点都需要增加yum源) vim /etc/yum.repos.d/ceph.repo
或阿里的ceph源
复制配置文件到其它节点和客户端
在ceph1更新软件源并安装ceph-deploy 管理工具
配置文件的默认副本数从3改成2,这样只有两个osd也能达到 active+clean 状态,添加行 osd_pool_default_size = 2
(如果网络源安装失败,手工安装epel-release 然后安装yum –yinstall cep-release再yum –y install ceph ceph-radosgw)
错误参考: https://blog.csdn.net/yenai2008/article/details/72457463
添加osd节点 (所有osd节点执行)
我们实验准备时已经创建目录/var/local/osd{id}
(用ceph-deploy把配置文件和admin密钥拷贝到所有节点,这样每次执行Ceph命令行时就无需指定monitor地址和ceph.client.admin.keyring了)
以上基本上完成了ceph存储集群的搭建。
其中: <pg_num> = 128 ,
关于创建存储池
确定 pg_num 取值是强制性的,因为不能自动计算。下面是几个常用的值:
随着 OSD 数量的增加,正确的 pg_num 取值变得更加重要,因为它显着地影响着集群的行为、以及出错时的数据持久性(即灾难性事件导致数据丢失的概率)。
创建好存储池后,你就可以用 fs new 命令创建文件系统了
ceph fs new <fs_name> cephfs_metadata cephfs_data
其中: <fs_name> = cephfs 可自定义
在这里想起没在/etc/fstab配置ceph1、ceph2、ceph3的sdb自动挂载。
ceph在开源社区还是比较热门的,但是更多的是应用于云计算的后端存储。所以大多数在生产环境中使用ceph的公司都会有专门的团队对ceph进行二次开发,ceph的运维难度也比较大。但是经过合理的优化之后,ceph的性能和稳定性都是值得期待的。
清理机器上的ceph相关配置
可以参考内容: http://blog.51cto.com/12270625/1887648
I. 如何自己在linux上搭建类似云盘的分布式云存储
我们常用的系统大多数是Windows和Mac,但是相比较来说在Linux上部署云盘更稳定。楼主的想要的是如何从0到1,一步步开发、搭建云存储,但相对于大众来说,难度系数太高,毕竟不是人人都有IT技术,也不是每个公司都有IT人员能够完成开发、搭建、部署、运维的。
楼上已经有答案说到开发的层面,那我就来说说更适合大众的搭建方式,那就是拿成熟的云盘产品直接搭建。
现在云盒子企业私有云盘的官网上提供了云盒子Linux服务器安装包,大家有服务器或者闲置电脑的话,可以直接进入下载板块下载适用,为方便大家搭建,云盒子还附上了使用帮助,根据提示轻松部署。
Linux搭建云存储
关于运维也不用担心,云盒子配备了实施工程师,排查、解决、更新都不用你操心。
有兴趣的朋友可以试试
J. 分布式minio搭建指南
分布式Minio可以让你将多块硬盘(甚至在不同的机器上)组成一个对象存储服务。由于硬盘分布在不同的节点上,分布式Minio避免了单点故障。
在大数据领域,通常的设计理念都是无中心和分布式的。Minio分布式模式可以帮助你搭建一个高可用的对象存储服务,你可以使用这些存储设备,而不用考虑其真实物理位置。
分布式Minio采用 纠删码来防范多个节点宕机和位衰减bit rot。
分布式Minio至少需要4个硬盘,使用分布式Minio自动引入了纠删码功能。
单机Minio服务存在单点故障,相反,如果是一个有N块硬盘的分布式Minio,只要有N/2硬盘在线,你的数据就是安全的。不过你需要至少有N/2+1个硬盘来创建新的对象。
例如,一个16节点的Minio集群,每个节点16块硬盘,就算8台服务器宕机,这个集群仍然是可读的,不过你需要9台服务器才能写数据。
注意,只要遵守分布式Minio的限制,你可以组合不同的节点和每个节点几块硬盘。比如,你可以使用2个节点,每个节点4块硬盘,也可以使用4个节点,每个节点两块硬盘,诸如此类。
Minio在分布式和单机模式下,所有读写操作都严格遵守 read-after-write 一致性模型。
如果你了解Minio单机模式的搭建的话,分布式搭建的流程基本一样,Minio服务基于命令行传入的参数自动切换成单机模式还是分布式模式。
安装Minio - Minio快速入门.
启动一个分布式Minio实例,你只需要把硬盘位置做为参数传给minio server命令即可,然后,你需要在所有其它节点运行同样的命令。
注意
目录创建
run:启动脚本及二进制文件目录;
data:数据存储目录;
/etc/minio:配置文件目录;
集群启动文件
配置为系统服务
将minio二进制文件上传到/data/minio/run目录
给所有涉及到的文件或目录添加权限!
集群启动