导航:首页 > 源码编译 > 图像涂抹算法

图像涂抹算法

发布时间:2022-12-24 15:19:17

1. 图像处理算法有哪些

多了:图像分割、增强、滤波、形态学,等等,推荐看数字图像处理那本厚书

2. 在图像处理中有哪些算法

1、图像变换:

由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。

2、图像编码压缩

图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3、图像增强和复原:

图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

4、图像分割:

图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

5、图像描述:

图像描述是图像识别和理解的必要前提。

一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。

6、图像分类:

图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。

(2)图像涂抹算法扩展阅读:

图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。

数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。

数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,

但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。

3. 在图像处理中有哪些算法

太多了,去找本书看看吧!给个大概的介绍好了
图像处理主要分为两大部分:
1、图像增强
空域方法有 直方图均衡化
灰度线性变化
线性灰度变化
分段线性灰度变化
非线性灰度变化(对数扩展
指数扩展)

图像平滑
领域平均法(加权平均法
非加权领域平均法)
中值滤波
图像锐化
Roberts算子
Sobel算子
拉普拉斯算子

频域方法有
低通滤波
理想低通滤波
巴特沃斯低通滤波
指数低通滤波
梯形低通滤波
高通滤波
理想高通滤波
巴特沃斯高通滤波
指数高通滤波
梯形高通滤波
彩色图像增强(真彩色、假彩色、伪彩色增强)
2、图像模糊处理
图像模糊处理
运动模糊(维纳滤波
最小均方滤波
盲卷积
……


高斯模糊(维纳滤波
最小均方滤波
盲卷积
……

图像去噪处理
高斯噪声
(维纳滤波
样条插值
低通滤波
……

椒盐噪声
(中值滤波
……

4. 图像的特征提取都有哪些算法

图像的经典特征提取方法:
1 HOG(histogram of Oriented Gradient,方向梯度直方图)
2 SIFT(Scale-invariant features transform,尺度不变特征变换)
3 SURF(Speeded Up Robust Features,加速稳健特征,对sift的改进)
4 DOG(Difference of Gaussian,高斯函数差分)
5 LBP(Local Binary Pattern,局部二值模式)
6 HAAR(haar-like ,haar类特征,注意haar是个人名,haar这个人提出了一个用作滤波器的小波,为这个滤波器命名为haar滤波器,后来有人把这个滤波器用到了图像上,就是图像的haar特征)

图像的一般提取特征方法:
1 灰度直方图,颜色直方图
2 均值,方差
3 信号处理类的方法:灰度共生矩阵,Tamura纹理特征,自回归纹理特征,小波变换。
4 傅里叶形状描述符,小波描述符等,

5. 图像处理的滤镜算法

将颜色的RGB设置为相同的值即可使得图片为灰色,一般处理方法有:
1、取三种颜色的平均值
2、取三种颜色的最大值(最小值)
3、加权平均值:0.3 R + 0.59 G + 0.11*B

顾名思义,就是图片的颜色只有黑色和白色,可以计算rgb的平均值arg,arg>=100,r=g=b=255,否则均为0

就是RGB三种颜色分别取255的差值。

rgb三种颜色取三种颜色的最值的平均值。

就是只保留一种颜色,其他颜色设为0

高斯模糊的原理就是根据正态分布使得每个像素点周围的像素点的权重不一致,将各个权重(各个权重值和为1)与对应的色值相乘,所得结果求和为中心像素点新的色值。我们需要了解的高斯模糊的公式:

怀旧滤镜公式

公式:
r = r 128/(g+b +1);
g = g
128/(r+b +1);
b = b*128/(g+r +1);

公式:
r = (r-g-b) 3/2;
g = (g-r-b)
3/2;
b = (b-g-r)*3/2;

公式:
R = |g – b + g + r| * r / 256

G = |b – g + b + r| * r / 256;

B = |b – g + b + r| * g / 256;

公式:
r = r * 0.393 + g * 0.769 + b * 0.189;
g = r * 0.349 + g * 0.686 + b * 0.168;
b = r * 0.272 + g * 0.534 + b * 0.131;

最后是一个广告贴,最近新开了一个分享技术的公众号,欢迎大家关注👇

6. 数字图像处理的基本算法及要解决的主要问题

图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。

图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。

传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
目录
[隐藏]

* 1 解决方案
* 2 常用的信号处理技术
o 2.1 从一维信号处理扩展来的技术和概念
o 2.2 专用于二维(或更高维)的技术和概念
* 3 典型问题
* 4 应用
* 5 相关相近领域
* 6 参见

[编辑] 解决方案

几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如 全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。

从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。

[编辑] 常用的信号处理技术

大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。

图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。

[编辑] 从一维信号处理扩展来的技术和概念

* 分辨率(Image resolution|Resolution)
* 动态范围(Dynamic range)
* 带宽(Bandwidth)
* 滤波器设计(Filter (signal processing)|Filtering)
* 微分算子(Differential operators)
* 边缘检测(Edge detection)
* Domain molation
* 降噪(Noise rection)

[编辑] 专用于二维(或更高维)的技术和概念

* 连通性(Connectedness|Connectivity)
* 旋转不变性(Rotational invariance)

[编辑] 典型问题

* 几何变换(geometric transformations):包括放大、缩小、旋转等。
* 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
* 图像合成(image composite):多个图像的加、减、组合、拼接。
* 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
* 边缘检测(edge detection):进行边缘或者其他局部特征提取。
* 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
* 图像制作(image editing):和计算机图形学有一定交叉。
* 图像配准(image registration):比较或集成不同条件下获取的图像。
* 图像增强(image enhancement):
* 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
* 图像压缩(image compression):研究图像压缩。

[编辑] 应用

* 摄影及印刷 (Photography and printing)
* 卫星图像处理 (Satellite image processing)
* 医学图像处理 (Medical image processing)
* 面孔识别, 特征识别 (Face detection, feature detection, face identification)
* 显微图像处理 (Microscope image processing)
* 汽车障碍识别 (Car barrier detection)

[编辑] 相关相近领域

* 分类(Classification)
* 特征提取(Feature extraction)
* 模式识别(Pattern recognition)
* 投影(Projection)
* 多尺度信号分析(Multi-scale signal analysis)
* 离散余弦变换(The Discrete Cosine Transform)

7. 把图像变模糊的算法一般是怎样实现的

第一步:先复制背景图层。第二步:滤镜——模糊——高斯模糊(数值大小跟据你想要的效果定)第三步:为复制北影图层添加蒙版,再用画笔工具擦出你想要的清楚的地方!

8. 图像处理的算法有哪些

图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
1.二值化操作
图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
2.直方图处理
直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。
3.模板卷积运算
模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。

9. 谁能告诉我ps是如何将图像的边缘处理的那么光滑并且主体不模糊的 算法原理是什么

先复制一个图。。有滤镜里的高斯模糊调整复制出来的图层。再在这层上加蒙版。用黑色画笔涂抹不需要模糊的地方。

10. 无缝贴图算法原理

亲你好,无缝贴图就是采用一小块图案,平铺成包含重复纹理的大幅画面的技术。砖墙类是其中最难处理的案例,并对素材的质量依赖性较高。
当为砖墙拍摄照片用于素材时,一定要尽量减小透视效果,以便于后续的纹理处理。
我使用 Jeremy Englemans Public Textures 下载的砖墙照片来做示范。

第一步是在照片中选择一块正方形区域进行裁切。注意选框要沿着砖缝走,而且上下两条砖的排列要错开,这样平铺时纹理的衔接才会更自然。

裁切好后,选择‘滤镜>其它>位移’工具,‘未定义区域’选‘折回’,水平和垂直方向各位移一半的图像距离。如图所示,红线标注的墙缝应该对齐到蓝线标注的位置。有两种方法可以做到。一种是加宽画面,让红色和蓝色对接上,另一种是把中间的结合处缩短一点。从最后的效果来看,我选择加宽。但这样做有一个缺点,就是画面的分辨率会有损失。不过没关系,一般游戏用的贴图尺寸为256像素,我裁切的大小有400多像素,由画面拉伸造成的分辨率损失不会对最终效果有任何影响。

检查完毕,在位移中输入相反的数值,让图像恢复原样。
观察纹理还会发现一个问题——照片的透视变形。从红线可以看出墙缝是斜的,左边比右边窄。在对接墙缝之前,先把这个问题处理掉。

使用‘变换>移动>透视’来修正上面的问题。

按住 shift 键分别朝左上和左下方向拖动两个相应位置的控制点。稍微移动一点距离,图片的透视变形效果就被纠正了。

按 ctrl+a 选择整个画布,然后分别按下 alt+i 和 alt+p 裁切选区,这样就把刚才拉伸出来的左半边多出画面的部分删除掉了,避免后续的位移操作中再次出现。
现在使用编辑>变换>缩放工具将图像沿右侧方向拉宽,根据最开始观察的位移图,可以判断大概多出半个砖头的距离。注意不要按着 shift 键,那样就变成‘按比例缩放’了。

重新按ctrl+a全选画布并裁切,去掉多出画面的部分。
重复最开始的步骤,位移画面,墙缝的各处接线已经对齐了,使用‘仿制图章’工具抹除颜色接缝。

使用‘仿制图章’需要更多的耐心和技巧,定义+号位置为仿制点,然后在o形位置涂抹。完成后如下图所示。

阅读全文

与图像涂抹算法相关的资料

热点内容
程序员大咖java 浏览:62
苹果手机文档安卓上怎么打开 浏览:527
如何做淘宝代理服务器 浏览:664
gz压缩文件夹 浏览:179
字母h从右往左跑的c语言编程 浏览:127
安卓手机如何拥有苹果手机横条 浏览:765
业余编程语言哪个好学 浏览:137
按照文件夹分个压缩 浏览:104
航空工业出版社单片机原理及应用 浏览:758
如何在电信app上绑定亲情号 浏览:376
安卓的怎么用原相机拍月亮 浏览:805
配音秀为什么显示服务器去配音了 浏览:755
c盘清理压缩旧文件 浏览:325
app怎么交付 浏览:343
图虫app怎么才能转到金币 浏览:175
如何做征文app 浏览:446
用什么app管理斐讯 浏览:169
安卓如何下载宝可梦剑盾 浏览:166
编译器开发属于哪个方向 浏览:940
megawin单片机 浏览:687