1. 遗传算法都能干啥啊
遗传算法的应用有很多,一般用于解决工程优化问题。像选址问题、排班问题、路线优化、参数优化、函数求极值等等
2. 为什么遗传算法能被广泛的应用到各个领域
遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点 1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。 2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。 3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。 4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。 5.遗传算法具有隐含的并行性
3. 基本遗传算法介绍
遗传算法是群智能优化计算中应用最为广泛、最为成功、最具代表性的智能优化方法。它是以达尔文的生物进化论和孟德尔的遗传变异理论为基础,模拟生物进化过程和机制,产生的一种群体导向随机搜索技术和方法。
遗传算法的基本思想:首先根据待求解优化问题的目标函数构造一个适应度函数。然后,按照一定的规则生成经过基因编码的初始群体,对群体进行评价、遗传运算(交叉和变异)、选择等操作。经过多次进化,获得适应度最高的一个或几个最优个体作为问题的最优解。
编码是对问题的可行解的遗传表示,是影响算法执行效率的关键因素的之一。遗传算法中,一个解 称为个体或染色体(chromosome),染色体由被称为基因(gene)的离散单元组成,每个基因控制颜色体的一个或多个特性,通常采用固定长度的0-1二进制编码,每个解对应一个唯一的二进制编码串编码空间中的二进制位串称为基因型(genotype)。而实际所表示问题的解空间的对应点称为表现型(phenotype)。
种群由个体构成,每个个体的染色体对应优化问题的一个初始解。
适应度函数是评价种群中个体对环境适应能力的唯一确定性指标,体现出“适者生存,优胜劣汰”这一自然选择原则。
遗传算法在每次迭代过程中,在父代种群中采用某种选择策略选择出指定数目的哥特体提进行遗传操作。最常用的选择策略是正比选择(proportional selection)策略。
在 交叉算子中,通常由两个被称为父代(parent)的染色体组合,形成新的染色体,称为子代(offspring)。父代是在种群中根据个体适应度进行选择,因此适应度较高的染色体的基因更有可能被遗传到下一代 。通过在迭代过程中不断地应用交叉算子,使优良个体的基因得以在种群中频繁出现,最终使得整个种群收敛到一个最优解。
在染色体交叉之后产生的子代个体,其基因位可能以很小的概率发生转变,这个过程称为变异。变异是为了增强种群的多样性,将搜索跳出局部最优解。
遗传算法的停止准则一般采用设定最大迭代次数或适应值函数评估次数,也可以是规定的搜索精度。
已Holland的基本GA为例介绍算法等具体实现,具体的执行过程描述如下:
Step 1: 初始化 。随机生成含有 个个体的初始种群 ,每个个体经过编码对应着待求解优化问题的一个初始解。
Step 2: 计算适应值 。个体 ,由指定的适应度函数评价其适应环境的能力。不同的问题,适应度函数的构造方式也不同。对函数优化问题,通常取目标函数作为适应度函数。
Step 3: 选择 。根据某种策略从当前种群中选择出 个个体作为重新繁殖的下一代群体。选择的依据通常是个体的适应度的高低,适应度高的个体相比适应度低的个体为下一代贡献一个或多个后代的概率更大。选择过程提现了达尔文“适者生存”原则。
Step 4: 遗传操作 。在选出的 个个体中,以事件给定的杂交概率 任意选择出两个个体进行 交叉运算 ,产生两个新的个体,重复此过程直到所有要求杂交的个体杂交完毕。根据预先设定的变异概率 在 个个体中选择出若干个体,按一定的策略对选出的个体进行 变异运算 。
Step 5: 检验算法等停止条件 。若满足,则停止算法的执行,将最优个体的染色体进行解码得到所需要的最优解,否则转到 Step 2 继续进行迭代过程。
4. 遗传算法可以解决什么问题
遗传算法的应用比较广泛,可用于解决数值优化、组合优化、机器学习、智能控制、人工生命、图像处理、模式识别等领域的问题。比较具体多是:函数最值问题、旅行商问题、背包问题、车辆路径问题、生产排程问题、选址问题等。
5. 遗传算法原理简介
遗传算法(Genetic Algorithm, GA)是一种进化计算(Evolutionary Computing)算法,属于人工智能技术的一部分。遗传算法最早是由John Holland和他的学生发明并改进的,源于对达芬奇物种进化理论的模仿。在物种进化过程中,为了适应环境,好的基因得到保留,不好的基因被淘汰,这样经过很多代基因的变化,物种的基因就是当前自然环境下适应度最好的基因。该算法被广泛应用于优化和搜索中,用于寻求最优解(或最优解的近似),其最主要的步骤包括交叉(crossover)和突变(mutation)。
所有的生物体都由细胞组成,每个细胞中都包含了同样的染色体(chromosome)。染色体由一串DNA组成,我们可以简单地把一个生物个体表示为一条染色体。每条染色体上都包含着基因,而基因又是由多个DNA组成的。每个基因都控制着个体某个性状的表达,例如眼睛的颜色、眼皮的单双等。在物种繁衍的过程中,首先发生交叉,来自于父母的染色体经过分裂和重组,形成后代的染色体。之后,后代有一定概率发生基因突变,即染色体上某个位置处的基因以一定概率发生变化。之后,对每一代都重复进行交叉和突变两个步骤。对于每一个后代,我们可以通过一定的方式测量其适应度。适应度越好的个体,在下一次交叉中被选中的概率越大,它的基因越容易传给下一代。这样,后代的适应度就会越来越好,直到收敛到一个稳定值。
在优化问题中,可行解总是有很多个,我们希望寻找一个最优解,它相对于其他可行解来说具有更好的适应度(即目标函数值更大或更小)。每个可行解就是一个“生物个体”,可以表示为状态空间中的一个点和适应度。每个解都是一个经过编码的序列,已二进制编码为例,每个解都是一个二进制序列。这样每个染色体就是一个二进制序列。遗传算法从从一组可行解开始,称为population,从population中随机选择染色体进行交叉产生下一代。这一做法的基于下一代的适应度会好于上一代。遗传算法的过程如下:
终止条件可以是达到了最大迭代次数,或者是前后连续几代的最优染色体的适应度差值小于一个阈值。以上算法描述也许还不够直观,我们举例说明。假设解可以用二进制编码表示,则每个染色体都是一个二进制序列。假设序列长度为16,则每个染色体都是一个16位的二进制序列:
首先,我们随机生成一个population,假设population size为20,则有20个长度为16的二进制序列。计算每个染色体的适应度,然后选取两个染色体进行交叉,如下图所示。下图在第6为上将染色体断开再重组,断开的位置是可以随机选择的。当然,断裂位置也可以不止一个。可以根据具体问题选择具体的交叉方式来提升算法性能。
之后,随机选取后代染色体上某个基因发生基因突变,突变的位置是随机选取的。并且,基因突变并不是在每个后代上都会发生,只是有一定的概率。对于二进制编码,基因突变的方式是按位取反:
上述例子是关于二进制编码的,像求解一元函数在某个区间内的最大最小值就可以使用二进制编码。例如,求解函数f(x)=x+sin(3x)+cos(3x)在区间[0,6]内的最小值。假设我们需要最小值点x保留4位小数,那么求解区间被离散成60000个数。因为2 {15}<60000<2 {16},所以,需要16位二进制数来表示这60000个可能的解。其中0x0000表示0,0x0001表示0.0001,以此类推。针对这个例子,文末给出了demo code.
然而,在排序问题中无法使用二进制编码,应该采用排列编码(permutation encoding)。例如有下面两个染色体:
交叉:随机选取一个交叉点,从该出将两个染色体断开。染色体A的前部分组成后代1的前部分,然后扫描染色体B,如果出现了后代1中不包含的基因,则将其顺序加入后代1中。同理,染色体B的前部分组成了后代2的前部分,扫描染色体A获得后代2的后部分。注意,交叉的方式多种多样,此处只是举出其中一种方式。
( 1 5 3 2 6 | 4 7 9 8) + ( 8 5 6 7 2 | 3 1 4 9) => ( 1 5 3 2 6 8 7 4 9) + ( 8 5 6 7 2 1 3 4 9)
突变:对于一个染色体,随机选中两个基因互换位置。例如第3个基因和倒数第2个基因互换:
(1 5 3 2 6 8 7 4 9) => (1 5 4 2 6 8 7 3 9)
此外还有值编码(value encoding)和树编码(tree encoding)等,具体例子可以参考这个链接: http://obitko.com/tutorials/genetic-algorithms/encoding.php
在实际的遗传算法中,往往会保留上一代中的少数几个精英(elite),即将上一代population中适应度最好的几个染色体加入到后代的poulation中,同时去除后代population中适应度最差的几个染色体。通过这个策略,如果在某次迭代中产生了最优解,则最优解能够一直保留到迭代结束。
用GA求函数最小值的demo code: https://github.com/JiaxYau/GA_test
参考资料 :
[1] Introction to Genetic Algorithm, http://obitko.com/tutorials/genetic-algorithms/index.php
[2] Holland J H. Adaption in natural and artificial systems
6. 遗传算法的核心是什么!
遗传操作的交叉算子。
在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。
(6)遗传算法应用主要是什么扩展阅读
评估编码策略常采用以下3个规范:
a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。
b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。
c)非冗余性(nonrendancy):染色体和候选解一一对应。
目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。
而二进制编码是目前遗传算法中最常用的编码方法。即是由二进制字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。
7. 遗传算法可以解决哪些问题
遗传算法主要是用来求解最优化问题的。
一般来讲可以求解函数的最大、最小值问题,还可以结合其它一些方法解决(非)线性回归、分类问题等等。
但遗传算法有两个缺点,一是时间长,二是初值的选择会影响收敛的效果。
它的本质,实际上还是随机搜索算法,还是属于所谓的蒙特卡罗式的方法。