‘壹’ 什么是秦九韶算法
秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
[编辑本段]意义
该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少CPU运算时间。
‘贰’ 秦九韶算法怎么算
一般地,一元n次多项式的求值需要经过(n+1)*n/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。
把一个n次多项式:
(2)高考要考秦九韶算法吗扩展阅读:
秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。秦九韶(约公元1202年-1261年),字道古,南宋末年人,出生于鲁郡(今山东曲阜一带人)。
早年曾从隐君子学数术,后因其父往四川做官,即随父迁徙,也认为是普州安岳(今四川安岳县)人。
秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。
在西方被称作霍纳算法,是以英国数学家霍纳命名的。
秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。(安岳县于1998年9月正式开工建设秦九韶纪念馆,2000年12月竣工落成。)
秦九韶聪敏勤学,宋绍定四年(公元1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守等职。先后在湖北、安徽、江苏、浙江等地做官。南宋理宗景定元年(公元1260年)出任梅州太守,翌年卒于梅州。
据史书记载,他“性及机巧,星象、音律、算术以至营造无不精究”,还尝从李梅亭学诗词。他在政务之余,以数学为主线进行潜心钻研,且应用范围至为广泛:天文历法、水利水文、建筑、测绘、农耕、军事、商业金融等方面。
秦九韶是我国古代数学家的杰出代表之一,他的《数书九章》概括了宋元时期中国传统数学的主要成就,尤其是系统总结和发展了高次方程的数值解法与一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”。对数学发展产生了广泛的影响。
秦九韶是一位既重视理论又重视实践,既善于继承又勇于创新的科学家,他被国外科学史家称为是“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一。
‘叁’ 秦九韶算法是什么
秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。
一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。特别是在现代,在使用计算机解决数学问题时,对于计算机程序算法而言秦九韶算法可以以更快的速度得到结果,减少了CPU运算时间。
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
‘肆’ 2019年高考考试大纲修改解读,高考大纲内容知识点
高考考纲做了较大修订,有三大变化,增加了中华传统文化的考核内容,完善了考核目标,调整了考试内容。对应这些变化,数学学科也做了相应调整:1、增加了数学文化的要求。2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。
总体上,这些变化对高考数学考试影响不大。基于两个原因,一是在这次高考考纲修订基本原则 “坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。、2018年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,高考仍然还会沿用这种思路命制试卷。二是近两年高考试卷已先于高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了,强调了中国传统数学文化精髓。在数学文化方面,2018年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋着名数学家秦九韶提出的多项式求值的算法,高考全国2卷文、理科数学的第8题涉及到了我国古代数学名着《九章算术》中的“更相减损术”。这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以高考对我们而言变化不会很大。而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。
综上,我们可以得出结论,高考命题形式会有一些变化,但整体难度变化不大。针对上述分析,现就高考备考复习提出以下建议:
1、回归教材,一箭多雕
回归教材至少解决三件事,即既解决了考纲对能力内涵方面的基础性、应用性和创新性的要求,又解决了学生对数学文化的初步感知。通过回归教材引导学生重视基础知识、基本技能和基本数学思想方法,进一步强化数学学科核心素养,聚力共性通法。通过回归教材引导学生阅读教材中各章节后面的“阅读与思考”、“探究与发现”和“实习作业”等材料,使学生对教材里中的秦九韶算法与更相减损术,“阅读与思考”中的中外历史上的方程求解、割圆术、海伦和秦九韶、九连环,“探究与发现”中的“杨辉三角”中的一些秘密及祖?原理与柱体、锥体、球体的体积等中华传统数学文化经典实例有所理解,从中感悟到中国古代数学文化与高中相关数学知识之间的密切联系。
2、补充数学发展历史,增厚数学文化底蕴
针对高考数学考纲的变化,高中阶段要重视“数学文化”教学。近两年高考已经考了秦九韶多项式求值算法和《九章算术》中的“更相减损术”,预计今年高考试卷可能会有杨辉三角、祖?原理、割圆术等相关内容出现。我们要积极挖掘这方面的数学文化背景与高中数学知识的内在联系。任课教师可以参考《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等算经十书及《四元玉鉴》、《算学启蒙》、《数书九章》、《测圆海镜》等古典数学名着,从中选取与高中数学有密切联系的具有代表性的案例,每周挤出一小节时间,让学生感受中国古代数学文化历史背景,进一步体会中国古代数学文化之精髓。
3、适度刷题,不求数量,但求质量
临近高考100天,适度刷题是非常必要的。
(1)整套试卷刷题
前面两条建议是所有考生在老师指导下都必须完成的必修课,而在这一部分要依学生的知识能力基础有所选择地采用不同的复习对策。
省重点及市重点靠前考生刷题要以成套模拟卷为主,频率为3套/周,且在周末对本周刷题或模考过程中发现的错题及自己本身相对薄弱部分的习题进行专项集中强化训练。切记,在刷题过程中,一定要养成归纳总结的习惯,做到自觉地举一反三,多题一解,一题多解,一题优解。
其他考生刷题要将成套模拟卷拆解进行专题训练,可以将数学试卷中的11、12、16、20(2)、21(2)去掉后进行训练,也可以根据自己的实际情况再将9、10、15、20(1)、21(1)、选考题第二问去掉后进行训练,频率为1-2套/周,在刷题过程中,要做到有意识地举一反三,多题一解,一题优解。
走特长的考生在前面的基础上再去掉7、8和剩余所有主观题(大题)第二问后进行训练,频率为1套/周,在刷题过程中,做到举一反三,一题优解。
(2)专项刷题
根据自己的弱项或需加强的项确定专项训练内容,将若干张模拟试卷中同类试题集中训练,如将2至3张模拟试卷中的立体几何题集中在一个时间训练,做完后立即核对修正答案并总结得失,然后再选2至3张模拟试卷重复前面的操作,在一至二周内,使用10至20套模拟卷(或高考卷)进行专项组合训练,这种 “狂轰滥炸”式的集中刷题会收到非常好的效果,当然前提条件是必须做到举一反三,多题一解,一题优解。
4、选考题复习策略
究竟选择哪个选考模块做为选考题?这要因人而异,不能一概而论。基础好的考生应该两个模块都复习,考试时以分值最大化为选择标准。中等生应在老师指导下确定自己的主打选考题,在模拟考试和平时训练时解答主打选考题,每次模考后把另一个选考题做一做,再看看答案,仅此而已,不牵扯更多精力,这是防止在高考中发生不会做或不能完整地做出自己的主打选考题时的应对措施。基础弱的同学适合现在就确定选考模块,具体确定选考模块方法是,选择第一问经常得高分的选考模块为高考时的选考题。
5、看题与写题
在复习中,基础好一些的考生不妨试试另一种解题方式??看题不写题,即用眼睛去阅读习题,用脑袋去思考解题,坚决不动笔写题,这对培养阅读能力、训练思维能力都很有益处。但这么做是有先决条件的:一是考生必须有比较扎实的学习基础,二是所做的习题是某类习题的衍生题(变式题)。做衍生题的最大好处是对相关类型习题的解法有了更深层次的理解,便于对此类方法的掌握与运用,而且还可以将该解法进一步延伸拓展,达到举一反三之功效。在同类习题中只要有一道题按高考评分标准进行规范书写,其它衍生题则均可以采用看题方式去做题,这既节省了时间,又锻炼了思维能力。
总之,在上述五条复习措施基础上,还要不断夯实“三基”,强化学科核心素养,重理解轻死记,重创新轻模仿,落实一日一梳理,一周一总结的学习习惯。
变化孕育着机会,机会萌发着成功,勇于面对改革,智慧迎接挑战,把握弯道超车的机会,奇迹就在有心人的前面。
从最近发布的高中课程方案看开始的高考改革
强调继承和发展
普通高中学生上千万,在普及高中教育的呼声越来越大的今天,课程改革首先是要继承已有的成功的经验,保证改革的连续性,只有这样才能够做到改革的平稳过渡。其次才是发展性,其发展重在于修正现行方案中的缺漏之处。所以,各位学生和家长也不需要过渡的焦虑,不要听信一些机构的危言耸听,改革后就会有翻天覆地的变化,不抓紧时间孩子就会落伍。至少在考试的难度上一定不会增加,最有可能出现的情况是考试难度减小,灵活性增强。
课程结构增加选择性
充分考虑学生发展的差异性,外语语种在保持原有外语类型的基础上,增加德语、法语和西班牙语,选择性更多。课程的三大类别必修、选择性必修和选修三部分有机衔接。各学科的必修部分是每一个高中学生都需要完成的考试内容,是高中学业水平考试必定要考查的部分,当然这部分内容相对而言难度会比较小。选择性必修部分是学生在选择这一科目作为升学考试科目是必须要修习的部分内容,难度上肯定会有所提高。选修部分学校各自学校的特色进行设置,体现的是学生的兴趣性,学而不考或学而备考,只是作为升学考试的一个重要参考。所以考生要重视的部分还是每个学科的必修和选择性必修这两部分。
更新教学内容
这部分内容主要是对教材中有误或者更新的知识进行修订,对陈旧的案例进行更换,体现教材与时俱进的一面,整体的知识结构和特点不会有太大的变动。
细化考试要求
各学科的课程方案对每个版块的内容要求、教学提示和学业要求做出了细致的提示,这样的做法更加能够体现课程标准的指导性,发挥指挥棒的作用,与现行的要求相比,最有可能会改变现在课程标准和考试大纲并行的体系,课程标准就能够起到考试大纲的作用,以后也许不会再出现单独的考试大纲,课程标准的重要性进一步提高。学业水平考试明确了各部分的学分要求,学生学习的目的性更加明确。
高考有什么改革方案
1、目前,按照教育部安排,高考改革只在上海市和浙江省进行试点,其它省份及地区还没有开始高考改革。
2、目前网上关于高考改革的谣言很多,大家一定要注意鉴别消息来源,不要被谣言误导。
3、目前高考改革只在上海市,浙江省进行试点,其它省份都还没有实行。按照教育部安排,其它省份的高考改革方案今年上报教育部审批,按照三年早知道原则,最早也要在2017年入学的高一新生开始实行。
2019高考改革看点
改革看点一:铺开3+3新模式,打破传统文理分科旧格局
几乎所有省份的高考改革都打破了旧时的文理分科,采用“3+3”模式,考生总成绩由统一高考的语文、数学、外语3个基础科目成绩和高中学业水平考试3门选考科目成绩组成,各省选考科目池大多为6门,部分省份为7门。高中学业水平考试以不同等级来评判,每一门课程学完即考,外语科目则提供两次考试机会,取最好成绩计入总成绩。
改革看点二:强调素质评价,推行全面素质教育
各省高考改革方案均将高中学生综合素质评价作为学生毕业和升学的重要参考,综合素质评价将考查学生德育品行、身心健康、爱好兴趣、实践能力等方面发展情况,全面推行素质教育。
;‘伍’ 辗转相除法,秦九韶算法高考考吗
辗转相除法,
又名欧几里德算法(euclidean
algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法,
其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第vii卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。
更相减损术,又称"等值算法"编纂于秦,书成于汉代。
“关于约分问题,实质是如何求分子,分母最大公约数的问题.<九章算术>中介绍了这个方法,叫做”更相减损术”,数学家刘徽对此法进行了明确的注解和说明,是一个实用的数学方法,中学生应该掌握它.
例1.今有九十一分之四十九,问约之得几何?
我们用(91,49)表示91和49的最大公约数.按刘徽所说,分别列出分子,分母,”以少减多,更相减损,求其等也,以等数约之,等数约之,即除也,其所以相减者皆等数之重叠,故以等数约之.”列式如下:
91
49
1
49
42
1
42
7
5
35
7
这里得到的7就叫做”等数”,91和49都是这等数的重叠(即倍数),故7为其公约数.而7和7的最大公约数就是7,(7,7)=7,所以
(91,49)=(42,7)=(7,7)=7
更相减损术在现代仍有理论意义和实用价值.吴文俊教授说:”在我国,求两数最大公约数即等数,用更相减损之术,将两数以小减大累减以得之,如求24与15的等数,其逐步减损如下表所示:
(24,15)->(9,15)->(9,6)->(3,6)->(3,3)
每次所得两数与前两数有相同的等数,两数之值逐步减少,因而到有限步后必然获得相同的两数,也即所求的等数,其理由不证自明.
这个寓理于算不证自明的方法,是完全构造性与机械化的尽可以据此编成程序上机实施”.吴先生的话不仅说明了此法的理论价值,而且指明学习和研究的方向.
更相减损法很有研究价值,它奠定了我国渐近分数,不定分析,同余式论和大衍求一术的理论基础.望能仔细品味
秦九韶是南宋数学家,关于秦九韶算法,直到今天,这种算法仍是多项式求值比较先进的算法
‘陆’ 2016高考数学再放"大招" “秦九韶算法”是个啥
书上有阿。就是多次项的简便运算。