A. 什么是计算几何和代数几何,微分几何有什么关系
1.计算几何是计算机理论科学的一个重要分支.自20世纪70年代末从算法设计与分析中独立出来起,不到30年,该学科已经有了巨大的发展,不仅产生了一系列重要的理论成果,也在众多实际领域中得到了广泛的应用.
计算几何基本概念和常用算法包括如下内容:
矢量的概念
矢量加减法
矢量叉积
折线段的拐向判断
判断点是否在线段上
判断两线段是否相交
判断线段和直线是否相交
判断矩形是否包含点
判断线段、折线、多边形是否在矩形中
判断矩形是否在矩形中
判断圆是否在矩形中
判断点是否在多边形中
判断线段是否在多边形内
判断折线是否在多边形内
判断多边形是否在多边形内
判断矩形是否在多边形内
判断圆是否在多边形内
判断点是否在圆内
判断线段、折线、矩形、多边形是否在圆内
判断圆是否在圆内
计算点到线段的最近点
计算点到折线、矩形、多边形的最近点
计算点到圆的最近距离及交点坐标
计算两条共线的线段的交点
计算线段或直线与线段的交点
求线段或直线与折线、矩形、多边形的交点
求线段或直线与圆的交点
凸包的概念
凸包的求法
http://www.frontfree.net/view/article_748.html
2.微分几何是以微积分作为工具研究曲线和曲面的性质及其推广应用的几何学。"微分几何学"一词是1894年由毕安基提出的。
http://lxy.zjfc.e.cn/sxsys/ReadNews.asp?NewsID=229&BigClassName=%CA%FD%D1%A7%CC%EC%B5%D8&SmallClassName=%D1%A7%BF%C6%B7%D6%D6%A7
3.代数几何是现代数学的一个重要分支学科。它的基本研究对象是在任意维数的空间中,由若干个代数方程的公共零点所构成的集合的几何特征。这样的几何通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。代数簇的最简单例子就是平面中的代数曲线。当前代数几何研究的重点是正体问题,主要是代数簇的分类以及给定的代数簇中的子簇的性质。
代数几何与数学的许多分支学科有着广泛的联系。代数几何的发展和这些学科的发展起着相互促进的作用。同时作为一门理论学科,代数几何的应用前景也开始受到人们的注意。近年来人们在现代物理的最新超弦理论中,已广泛应用代数几何。
http://www.ikepu.com/datebase/briefing/maths/algebraic_geometry.htm
B. 计算几何 算法设计与分析 怎么样
但是可以分类。以下是我查到的资料算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。算法可以宏泛的分为三类:有限的,确定
C. 《算法设计技巧与分析》pdf下载在线阅读,求百度网盘云资源
《算法设计技巧与分析》([沙特]M. H. Alsuwaiyel)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:算法设计技巧与分析
作者:[沙特]M. H. Alsuwaiyel
译者:吴伟昶
豆瓣评分:7.5
出版社:电子工业出版社
出版年份:2004-8
页数:318
内容简介:
本书是国际着名算法专家李德财教授主编的系列丛书“Lecture Notes Series on Computing”中的一本。本书涵盖了绝大多数算法设计中的一般技术,在表达每一种技术时,阐述它的应用背景,注意用与其他技术比较的方法说明它的特征,并提供大量相应实际问题的例子。本书同时也强调了对每一种算法的详细的复杂性分析。全书分七部分19章,从算法设计和算法分析的基本概念和方法入手,先后介绍了递归技术、分治、动态规划、贪心算法、图的遍历等技术,对NP完全问题进行了基本但清楚的讨论。对概率算法、近似算法和计算几何这些近年来发展迅猛的领域也用一定的篇幅讲述了基本内容。书中每章后都附有大量的练习题,有利于读者对书中内容的理解和应用。
本书结构简明,内容丰富,适合于作为计算机学科以及相关学科算法课程的教材和参考书,尤其适宜于学过数据结构和离散数学课程之后的算法课教材。同时也可作为从事算法研究的一本好的入门书。
D. 算法在实际生活中的应用
求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类中的每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。算法的这种特性,使得计算不仅可以由人,而且可以由计算机来完成。用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
中国古代的筹算口决与珠算口决及其执行规则就是算法的雏形,这里,所解决的问题类是算术运算。古希腊数学家欧几里得在公元前3世纪就提出了一个算法,来寻求两个正整数的最大公约数,这就是有名的欧几里得算法,亦称辗转相除法。中国早已有“算术“、“算法”等词汇,但是它们的含义是指当时的全部数学知识和计算技能,与现代算法的含义不尽相同。英文algorithm(算法)一词也经历了一个演变过程,最初的拼法为algorism或algoritmi,原意为用阿拉伯数字进行计算的过程。这个词源于公元 9世纪波斯数字家阿尔·花拉子米的名字的最后一部分。
在古代,计算通常是指数值计算。现代计算已经远远地突破了数值计算的范围,包括大量的非数值计算,例如检索、表格处理、判断、决策、形式逻辑演绎等。
在20世纪以前,人们普遍地认为,所有的问题类都是有算法的。20世纪初,数字家们发现有的问题类是不存在算法的,遂开始进行能行性研究。在这一研究中,现代算法的概念逐步明确起来。30年代,数字家们提出了递归函数、图灵机等计算模型,并提出了丘奇-图灵论题(见可计算性理论),这才有可能把算法概念形式化。按照丘奇-图灵论题,任意一个算法都可以用一个图灵机来实现,反之,任意一个图灵机都表示一个算法。
按照上述理解,算法是由有限多个步骤组成的,它有下述两个基本特征:每个步骤都明确地规定要执行何种操作;每个步骤都可以被人或机器在有限的时间内完成。人们对于算法还有另一种不同的理解,它要求算法除了上述两个基本特征外,还要具有第三个基本特征:虽然有些步骤可能被反复执行多次,但是在执行有限多次之后,就一定能够得到问题的解答。也就是说,一个处处停机(即对任意输入都停机)的图灵机才表示一个算法,而每个算法都可以被一个处处停机的图灵机来实现
算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
算法可以宏泛的分为三类:
有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。算法特征一个算法应该具有以下五个方面的重要特征:1、输入。一个算法有零个或多个输入,以刻画运算对象的初始情况。例如,在欧几里得算法中,有两个输入,即m和n。2、确定性。算法的每一个步骤必须要确切地定义。即算法中所有有待执行的动作必须严格而不含混地进行规定,不能有歧义性。例如,欧几里得算法中,步骤1中明确规定“以m除以n,而不能有类似以m除n以或n除以m这类有两种可能做法的规定。3、有穷性,一个算法在执行有穷步滞后必须结束。也就是说,一个算法,它所包含的计算步骤是有限的。例如,在欧几里得算法中,m和n均为正整数,在步骤1之后,r必小于n,若r不等于0,下一次进行步骤1时,n的值已经减小,而正整数的递降序列最后必然要终止。因此,无论给定m和n的原始值有多大,步骤1的执行都是有穷次。4、输出。算法有一个或多个的输出,即与输入有某个特定关系的量,简单地说就是算法的最终结果。例如,在欧几里得算法中只有一个输出,即步骤2中的n。5、能行性。算法中有待执行的运算和操作必须是相当基本的,换言之,他们都是能够精确地进行的,算法执行者甚至不需要掌握算法的含义即可根据该算法的每一步骤要求进行操作,并最终得出正确的结果。算法的描述1、用自然语言描述算法前面关于欧几里得算法以及算法实例的描述,使用的都是自然语言。自然语言是人们日常所用的语言,如汉语、英语、德语等。使用这些语言不用专门训练,所描述的算法也通俗易懂。2、用流程图描述算法在数学课程里,我们学习了用程序框图来描述算法。在程序框图中流程图是描述算法的常用工具由一些图形符号来表示算法。3、用伪代码描述算法伪代码是用介于自然语言和计算机语言之间的文字和符号来描述算法的工具。它不用图形符号,因此,书写方便、格式紧凑,易于理解,便于向计算机程序设计语言过度。
E. 计算几何的内容简介
本书主要研究几何目标在计算机环境内的数学表示、编辑、计算和传输等方面的理论与方法及相关的应用,其中包含连续性方法和离散性方法。书中内容包括计算几何相关的基础理论、多元样条函数的研究方法、局部多项式插值及超值插值、分片有理函数插值、多项式样条空间结构与代数曲线、NURBS曲线与曲面、曲线/曲面细分方法及曲线与曲面参数化等。本书面向具有本科数学分析和线性代数知识的读者,力求容易入门、由浅入深、讲透原理、联系应用。
本书可作为普通高等学校信息与计算科学专业本科生教材,也可作为计算数学专业硕士生、博士生相关课程的教材或参考书,还可供从事计算机辅助几何设计、计算机图形图像处理等相关领域的科学技术工作者参考。
F. 什么是算法,都什么,举个例子,谢谢
根据我个人的理解:
算法就是解决问题的具体的方法和步骤,所以具有以下性质:
1、有穷性: 一个算法必须保证执行有限步之后结束(如果步骤无限,问题就无法解决)
2、确切性:步骤必须明确,说清楚做什么。
3、输入:即解决问题前我们所掌握的条件。
4、输出:输出即我们需要得到的答案。
5、可行性:逻辑不能错误,步骤必须有限,必须得到结果。
算法通俗的讲:就是解决问题的方法和步骤。在计算机发明之前便已经存在。只不过在计算机发明后,其应用变得更为广泛。通过简单的算法,利用电脑的计算速度,可以让问题变得简单。
譬如:计算 1×2×3×4。。。。×999999999×1000000000
如果人为计算,可想而知,即使你用N卡车的纸张都很难计算出来,即使算出来了,也很难保证其准确性。
如果用VB算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就这样,简单的算法,通过计算机强大的计算能力,问题就解决了。
关于这段算法的解释:i每乘一次,其数值都会增大1,一直乘到1000000000,这样,就将从1到1000000000的每个数都乘了。而且每乘一次,就将结束赋给a,这样,a就代表了前面的相乘的所有结果,一直乘到1000000000。最后得到的a,就是我们想要的。
〓以下是网络复制过来的,如果你有足够耐心,可以参考一下。
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
[编辑本段]算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
详见网络词条"算法复杂度"
[编辑本段]算法设计与分析的基本方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
[编辑本段]算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
[编辑本段]举例
经典的算法有很多,如:"欧几里德算法"。
[编辑本段]算法经典专着
目前市面上有许多论述算法的书籍,其中最着名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introction To Algorithms)。
[编辑本段]算法的历史
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。
G. 代数几何,计算几何在应用数学下有什么应用
代数几何是纯数学的工具。计算几何更像是一类几何问题的总集,可以用到初等几何,流形,comformal geometry, 图论,拓扑等等。
目前我所在的计算几何组,学生主要来自于两方面,一类数学系,一类计算机系。代数几何在我的面试经验中,有一个3D打印的公司有要求。而计算几何由于它本身是与计算机相关的几何问题的总集,应用前景就更加广了。
比如运动轨迹的聚类(clustering),sensor deployment(guarding),TSP(routing),一时半会儿都说不完。
H. 算法有哪些分类
算法分类编辑算法可大致分为:
基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
I. acm初学者要准备什么 看什么书啊
刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇文章里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助。
一、语言是最重要的基本功
无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。其实,笔者并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。
接着说C和C++。许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。
而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。
C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。
通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误:
在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由于一个带缓冲一个不带,所以输出一长就混乱了。只是因为当时judge team中负责F题的人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地方的。
现在我们转入第二个方面的讨论,基础学科知识的积累。
二、以数学为主的基础知识十分重要
虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。
1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。
图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。
竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。
2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。
3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。
4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。
5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。
6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。
7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。
以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。
三、数据结构与算法是真正的核心
虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。
先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。
接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。
常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。
四、团队配合
通过以上的介绍大家也可以看出,信息学竞赛对于知识面覆盖的非常广,想凭一己之力全部消化这些东西实在是相当困难的,这就要求我们尽可能地发挥团队协作的精神。同组成员之间的熟练配合和默契的形成需要时间,具体的情况因成员的组成不同而不同,这里我就不再多说了。
五、练习、练习、再练习
知识的积累固然重要,但是信息学终究不是看出来的,而是练出来的,这是多少前人最深的一点体会,只有通过具体题目的分析和实践,才能真正掌握数学的使用和算法的应用,并在不断的练习中增加编程经验和技巧,提高对时间复杂度的感性认识,优化时间的分配,加强团队的配合。总之,在这里光有纸上谈兵是绝对不行的,必须要通过实战来锻炼自己。
大家一定要问,我们去哪里找题做,又如何检验程序是否正确呢?这大可不必担心,现在已经有了很多网上做题的站点,这些站点提供了大量的题库并支持在线判卷,你只需要把程序源码提交上去,马上就可以知道自己的程序是否正确,运行所使用的时间以及消耗的内存等等状况。下面我给大家推荐几个站点,笔者不建议大家在所有这些站点上做题,选择一个就可以了,因为每个站点的题都有一定的难易比例,系统地做一套题库可以使你对各种难度、各种类型的题都有所认识。
1、Ural:
Ural是中国学生对俄罗斯的Ural州立大学的简称 ,那里设立了一个Ural Online Problem Set,并且支持Online Judge。Ural的不少题目算法性和趣闻性都很强,得到了国内广大学生的厚爱。根据“信息学初学者之家”网站的统计,Ural的题目类型大概呈如下的分布:
题型
搜索
动态规划
贪心
构造
图论
计算几何
纯数学问题
数据结构
其它
所占比例
约10%
约15%
约5%
约5%
约10%
约5%
约20%
约5%
约25%
这和实际比赛中的题型分布也是大体相当的。有兴趣的朋友可以去看看。
2、UVA:
UVA代表西班牙Valladolid大学(University de Valladolid)。该大学有一个那里设立了一个PROBLEM SET ARCHIVE with ONLINE JUDGE ,并且支持ONLINE JUDGE,形式和Ural大学的题库类似。不过和Ural不同的是,UVA题目多的多,而且比较杂,而且有些题目的测试数据比较刁钻。这使得刚到那里做题的朋友往往感觉到无所适从,要么难以找到合适的题目,要么Wrong Answer了很多次以后仍然不知道错在那里。 如果说做Ural题目主要是为了训练算法,那么UVA题目可以训练全方位的基本功和一些必要的编程素质。UVA和许多世界知名大学联合办有同步网上比赛,因此那里强人无数,不过你先要使自己具有听懂他们在说什么的素质:)
3、ZOJ:
ZOJ是浙江大学建立的ONLINE JUDGE,是中国大学建立的第一个同类站点,也是最好和人气最高的一个,笔者和许多班里的同学就是在这里练习。ZOJ虽然也定位为一个英文网站,但是这里的中国学生比较多,因此让人觉得很亲切。这里目前有500多道题目,难易分配适中,且涵盖了各大洲的题目类型并配有索引,除此之外,ZOJ的JUDGE系统是几个网站中表现得比较好的一个,很少出现Wrong Answer和Presentation error混淆的情况。这里每月也办有一次网上比赛,只要是注册的用户都可以参加。
说起中国的ONLINE JUDGE,去年才开始参加ACM竞赛的北京大学现在也建立了自己的提交系统;而我们学校也是去年开始参加比赛,现在也有可能推出自己的提交系统,如果能够做成,到时候大家就可以去上面做题了。同类网站的飞速发展标志着有越来越多的同学有兴趣进入信息学的领域探索,这是一件好事,同时也意味着更激烈的竞争。
看看这篇文章对你有什么帮助!我也是ACM初学者!
J. ACM需要那些方面的知识
备战ACM资料
一:知识点
数据结构:
1,单,双链表及循环链表
2,树的表示与存储,二叉树(概念,遍历)二叉树的
应用(二叉排序树,判定树,博弈树,解答树等)
3,文件操作(从文本文件中读入数据并输出到文本文
件中)
4,图(基本概念,存储结构,图的运算)
数学知识
1,离散数学知识的应用(如排列组合、简单的图论,数
理逻辑)
2,数论知识
3,线性代数
4,组合代数
5,计算几何
二 算法
1,排序算法(冒抛法,插入排序,合并排序,快速排
序,堆排序)
2,查找(顺序查找,二分发)
3,回溯算法
4,递归算法
5,分治算法
6,模拟法
7,贪心法
8,简单搜索算法(深度优先,广度优先),搜索中的
剪枝,A*算法
9,动态规划的思想及基本算法
10,高精度运算
三、ACM竞赛的题型分析
竞赛的程序设计一般只有16种类型,它们分别是:
Dynamic Programming (动态规划)
Greedy (贪心算法)
Complete Search (穷举搜索)
Flood Fill (不知该如何翻译)
Shortest Path (最短路径)
Recursive Search Techniques (回溯搜索技术)
Minimum Spanning Tree (最小生成树)
Knapsack (背包问题)
Computational Geometry (计算几何学)
Network Flow (网络流)
Eulerian Path (欧拉回路)
Two-Dimensional Convex Hull (不知如何翻译)
BigNums (大数问题)
Heuristic Search (启发式搜索)
Approximate Search (近似搜索)
Ad Hoc Problems (杂题)
四 ACM竞赛参考书
《实用算法的分析与程序设计》 (吴文虎,王建德着,电子工业出版社,竞赛类的黑宝书)
《青少年国际和全国信息学(计算机)奥林匹克竞赛指导)――组合数学的算法
和程序设计》(吴文虎,王建德着,清华大学出版社,参加竞赛组合数学必学)
《计算机算法设计与分析》 (王晓东编着,最好的数据结构教材)
《数据结构与算法》 (傅清祥,王晓东编着,我所见过的最好的算法教材)
《信息学奥林匹克竞赛指导――1997-1998竞赛试题解析》(吴文虎,王建德着,清华大学出版社)
《计算机程序设计技巧》 D.E.Kruth着,算法书中最着名的《葵花宝典》,大师的作品,难度大)
《计算几何》周陪德着
《ACM国际大学生程序设计竞赛试题与解析(一)》 (吴文虎着,清华大学出版社)
《数学建模竞赛培训教材》 共三本 叶其孝主编
《数学模型》 第二版 姜启源
《随机规划》
《模糊数学》
《数学建模入门》 徐全智
《计算机算法设计与分析》 国防科大
五 常见的几个网上题库
常用网站:
1)信息学初学者之家:
(2)大榕树编程世界:
(3)中国教育曙光网:
(4)福建信息学奥林匹克:
(5)第20届全国青少年信息学奥林匹克竞赛:
(6)第15届国际青少年信息学奥林匹克竞赛:
(7)全美计算机奥林匹克竞赛:
(8)美国信息学奥林匹克竞赛官方网站:
(9)俄罗斯Ural州立大学:
(10)西班牙Valladolid大学:
(11)ACM-ICPC:
(12)北京大学:
(13)浙江大学:
(14)IOI:
(15)2003年江苏省信息学奥林匹克竞赛夏令营:
(16)
(17)
(18)
(19)
(20) colin_fox/colin_fox
五 如何备战ACM/ICPC
1,个人准备(算法书,习题集,网上做题和讨论)
2,1000题=亚洲冠军=世界决赛
3,做好资料收集和整理工作