导航:首页 > 源码编译 > glibc源码在哪个目录

glibc源码在哪个目录

发布时间:2022-12-25 23:00:10

㈠ 如何安装 glibc-2.15.tar

编译步骤:
下载glibc-2.15.tar.gz和补丁包glibc-ports-2.15.tar.gz
解压
$mv glibc-ports-2.15 glibc-2.15/ports
$mkdir glibc-build-2.15 &&cd glibc-build-2.15
$ ../glibc-2.15/configure \
--prefix=/usr/local/glibc_mips \
CC=mipsel-linux-gcc \
--host=mipsel-linux \
--build=i686-pc-linux-gnu \
--enable-add-on=nptl \
libc_cv_forced_unwind=yes \
libc_cv_c_cleanup=yes \
libc_cv_mips_tls=yes \
libc_cv_gnu99_inline=yes
ok,没问题
$make &&make install
大功告成

##########################################################################

下面是我编译时的过程和遇到的问题及解决:
##########################################################################

$tar xvf glibc-2.16.0.tar.bz2
$cd glibc-2.16.0
$./configure --prefix=/usr/local/glibc //先不加其他选项,除了安装路径,一切默认,网上一般配置arm的选项如下 --prefix=$HOME/usr/arm --with-headers=$HOME/usr/arm/glibc/arm-linux-glibc/include --with-libs=$HOME/usr/arm/glibc/arm-linux-glibc/lib
报错:
configure: error: you must configure in a separate build directory

很奇怪的问题,必须配置一个构建目录,刚开始以为是安装目录为创建
$mkdir /usr/local/glibc
问题仍然存在,网络之
$mkdir ../glibc-build && cd ../glibc-build
$../glibc-2.16.0/configure --prefix=/usr/local/glibc
出现新的问题:
configure: WARNING:
*** These auxiliary programs are missing or incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.
checking LD_LIBRARY_PATH variable... contains current directory
configure: error:
*** LD_LIBRARY_PATH shouldn't contain the current directory when
*** building glibc. Please change the environment variable
*** and run configure again.
第一个警告不用管它,第二个LD_LIBRARY_PATY也会有错?我的这个路径用了多少天了。仔细看提示,不应包含当前路径。打开~/.bash_profile
$cat ~/.bash_profile
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib export LD_LIBRARY_PATH

这也没当前路径啊。还是网络吧。
一个兄弟的解释是这样“LD_LIBRARY_PATH不能以终结符作为开始和最后一个字符,不能有2个终结符连在一起,我的LD_LIBRARY_PATH为 :/usr/local/firefox:/usr/local/firefox,只要在前面加上一个路径,不让:出现在第一个字符就可以了 ”
原来如此,第一个字符不能是":",修改~/.bash_profile
export LD_LIBRARY_PATH=/usr/local/lib export LD_LIBRARY_PATH

$../glibc-2.16.0/configure --prefix=/usr/local/glibc
ls一下,发现,当前目录生成了Makefile等一堆东西
$make && make install
没问题
下一步开始交叉编译
$mkdir ../glibc-build-mips && cd ../glibc-build-mips
$ ../glibc-2.16.0/configure --prefix=/usr/local/glibc_mips CC=mipsel-linux-gcc --host=mips
出现新的问题:
configure: running configure fragment for add-on libidn
configure: running configure fragment for add-on nptl
*** The GNU C library is currently not available for this platform.
*** So far nobody cared to port it and if there is no volunteer it
*** might never happen. So, if you have interest to see glibc on
*** this platform visit
*** http://www.gnu.org/software/libc/porting.html
*** and join the group of porters
看起来像是需要path,下载glibc-ports-2.16.tar.gz,放在源码包目录,解压
$ ../glibc-2.16.0/configure \
--prefix=/usr/local/glibc_mips \
CC=mipsel-linux-gcc \
CXX=mipsel-linux-g++ \
--host=mips \
--enable-add-ons=/home/hb/code/glibc/glibc-ports-2.16.0/sysdeps/mips
仍然报错:
configure: error: fragment must set $libc_add_on_canonical
改为:
$ ../glibc-2.16.0/configure \
--prefix=/usr/local/glibc_mips \
CC=mipsel-linux-gcc \
CXX=mipsel-linux-g++ \
--host=mips \
--enable-add-ons
报错:
configure: error: The mipsel is not supported.
这样不行,谷歌半天,总算知道补丁怎么用的了。把补丁目录拷到glibc目录下,改名为ports
$mv glibc-ports-2.16.0/ glibc-2.16.0/ports

$../glibc-2.16.0/configure \
--prefix=/usr/local/glibc_mips \
CC=mipsel-linux-gcc \
CXX=mipsel-linux-g++ \
--host=mipsel-linux \
--build=i686-pc-linux-gnu \
--enable-add-on
继续报错:
configure: error:
*** These critical programs are missing or too old: ld as
*** Check the INSTALL file for required versions.
这个问题可折腾死我了。弄了好半天,就是不行,最后google发现,原来是ld和as版本不对,不是太高就是太低。
configure中找到$AS --version
发现版本是这么匹配的2.1*.*
$mipsel-linux-ld
GNU ld (GNU Binutils) 2.18.50.20080908
原来是这样,在configure版本号那一行修改,最后的括号前面加入
|2.18.50.×
as那一行也同样修改
然后
$make
开始编译,看起来不错
好半天后,编译也报错了

In file included from ../include/uchar.h:1,
from mbrtoc16.c:23:
../wcsmbs/uchar.h:47:5: error: #error "<uchar.h> requires ISO C11 mode"
In file included from ../include/uchar.h:1,
from mbrtoc16.c:23:
../wcsmbs/uchar.h:52: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'char16_t'
../wcsmbs/uchar.h:53: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'char32_t'
../wcsmbs/uchar.h:61: error: expected ')' before '*' token
../wcsmbs/uchar.h:66: error: expected declaration specifiers or '...' before 'char16_t'
../wcsmbs/uchar.h:73: error: expected ')' before '*' token
../wcsmbs/uchar.h:78: error: expected declaration specifiers or '...' before 'char32_t'
mbrtoc16.c:37: error: expected ')' before '*' token
make[2]: *** [/home/hb/code/glibc/glibc-build-mips/wcsmbs/mbrtoc16.o] 错误 1
make[2]:正在离开目录 `/home/hb/code/glibc/glibc-2.16.0/wcsmbs'
make[1]: *** [wcsmbs/subdir_lib] 错误 2
make[1]:正在离开目录 `/home/hb/code/glibc/glibc-2.16.0'
make: *** [all] 错误 2
看看这个头文件咋回事
$ vim ../glibc-2.16.0/wcsmbs/uchar.h
#if defined __GNUC__ && !defined __USE_ISOCXX11
/* Define the 16-bit and 32-bit character types. Use the information
provided by the compiler. */
# if !defined __CHAR16_TYPE__ || !defined __CHAR32_TYPE__
# if defined __STDC_VERSION__ && __STDC_VERSION__ < 201000L
# error "<uchar.h> requires ISO C11 mode"
# else
# error "definitions of __CHAR16_TYPE__ and/or __CHAR32_TYPE__ missing"
# endif

# endif

明白了,原来是需要c11支持,mipsel-linux-gcc -v一下,我的支持c99.原来如此。暂时没招了,我还做不到修改c11的支持,只剩两个办法,不用这个glibc版本或者重新编译一个支持c11的交叉编译器。编译器需要做的比较多,暂时先换个低点的版本吧。
下载galibc-2.15版本
重复上面步骤,解压tar包
解压ports包
$mv glibc-ports-2.15 glibc-2.15/ports
$mkdir glibc-build-2.15 &&cd glibc-build-2.15
$ ../glibc-2.15/configure \
--prefix=/usr/local/glibc_mips \
CC=mipsel-linux-gcc \
--host=mipsel-linux \
--build=i686-pc-linux-gnu \
--enable-add-on=nptl \
libc_cv_forced_unwind=yes \
libc_cv_c_cleanup=yes \
libc_cv_mips_tls=yes \
libc_cv_gnu99_inline=yes
ok,没问题
$make &&make install
库已经编好了,但是不能直接使用,必须再用新的库重编一遍编译器才行。

上一篇

㈡ 在C语言里,关于库函数中各种数学函数的代码。

你说的就是库函数的源码,也就是glibc,源码在ftp://ftp.gnu.org/gnu/glibc可以下到,比如下载ftp://ftp.gnu.org/gnu/glibc/glibc-2.9.tar.gz,打开后就可以看到你需要的各种库的具体实现代码,比如在string中的strcat.c中就有

char*strcat(dest,src)
char*dest;
constchar*src;
{
char*s1=dest;
constchar*s2=src;
reg_charc;
/*Findtheendofthestring.*/
do
c=*s1++;
while(c!='');
/*,sowecanincrement
itwhilememoryisread(winsonpipelinedcpus).*/
s1-=2;
do
{
c=*s2++;
*++s1=c;
}
while(c!='');
returndest;
}

㈢ 如何为嵌入式开发建立交叉编译环境

下面我们将以建立针对arm的交叉编译开发环境为例来解说整个过程,其他的体系结构与这个相类似,只要作一些对应的改动。我的开发环境是,宿主机 i386-redhat-7.2,目标机 arm。
这个过程如下
1. 下载源文件、补丁和建立编译的目录
2. 建立内核头文件
3. 建立二进制工具(binutils)
4. 建立初始编译器(bootstrap gcc)
5. 建立c库(glibc)
6. 建立全套编译器(full gcc)
下载源文件、补丁和建立编译的目录
1. 选定软件版本号
选择软件版本号时,先看看glibc源代码中的INSTALL文件。那里列举了该版本的glibc编译时所需的binutils 和gcc的版本号。例如在 glibc-2.2.3/INSTALL 文件中推荐 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我选的各个软件的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你选的glibc的版本号低于2.2,你还要下载一个叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 内核你可以从www.kernel.org 或它的镜像下载。
Binutils、gcc和glibc你可以从FSF的FTP站点ftp://ftp.gun.org/gnu/ 或它的镜像去下载。 在编译glibc时,要用到 Linux 内核中的 include 目录的内核头文件。如果你发现有变量没有定义而导致编译失败,你就改变你的内核版本号。例如我开始用linux-2.4.25+vrs2,编译glibc-2.2.3 时报 BUS_ISA 没定义,后来发现在 2.4.23 开始它的名字被改为 CTL_BUS_ISA。如果你没有完全的把握保证你改的内核改完全了,就不要动内核,而是把你的 Linux 内核的版本号降低或升高,来适应 glibc。
Gcc 的版本号,推荐用 gcc-2.95 以上的。太老的版本编译可能会出问题。Gcc-2.95.3 是一个比较稳定的版本,也是内核开发人员推荐用的一个 gcc 版本。
如果你发现无法编译过去,有可能是你选用的软件中有的加入了一些新的特性而其他所选软件不支持的原因,就相应降低该软件的版本号。例如我开始用 gcc-3.3.2,发现编译不过,报 as、ld 等版本太老,我就把 gcc 降为 2.95.3。 太新的版本大多没经过大量的测试,建议不要选用。
回页首
2. 建立工作目录
首先,我们建立几个用来工作的目录:
在你的用户目录,我用的是用户liang,因此用户目录为 /home/liang,先建立一个项目目录embedded。
$pwd
/home/liang
$mkdir embedded
再在这个项目目录 embedded 下建立三个目录 build-tools、kernel 和 tools。
build-tools-用来存放你下载的 binutils、gcc 和 glibc 的源代码和用来编译这些源代码的目录。
kernel-用来存放你的内核源代码和内核补丁。
tools-用来存放编译好的交叉编译工具和库文件。
$cd embedded
$mkdir build-tools kernel tools
执行完后目录结构如下:
$ls embedded
build-tools kernel tools
3. 输出和环境变量
我们输出如下的环境变量方便我们编译。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH
如果你不惯用环境变量的,你可以直接用绝对或相对路径。我如果不用环境变量,一般都用绝对路径,相对路径有时会失败。环境变量也可以定义在.bashrc文件中,这样当你logout或换了控制台时,就不用老是export这些变量了。
体系结构和你的TAEGET变量的对应如下表

你可以在通过glibc下的config.sub脚本来知道,你的TARGET变量是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu
在我的环境中,config.sub 在 glibc-2.2.3/scripts 目录下。
网上还有一些 HOWTO 可以参考,ARM 体系结构的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 体系结构的《Linux for PowerPC Embedded Systems HOWTO》等。对TARGET的选取可能有帮助。
4. 建立编译目录
为了把源码和编译时生成的文件分开,一般的编译工作不在的源码目录中,要另建一个目录来专门用于编译。用以下的命令来建立编译你下载的binutils、gcc和glibc的源代码的目录。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch
build-binutils-编译binutils的目录
build-boot-gcc-编译gcc 启动部分的目录
build-glibc-编译glibc的目录
build-gcc-编译gcc 全部的目录
gcc-patch-放gcc的补丁的目录
gcc-2.95.3 的补丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以从 http://www.linuxfromscratch.org/ 下载到这些补丁。
再将你下载的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代码放入 build-tools 目录中
看一下你的 build-tools 目录,有以下内容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz
回页首
建立内核头文件
把你从 www.kernel.org 下载的内核源代码放入 $PRJROOT /kernel 目录
进入你的 kernel 目录:
$cd $PRJROOT /kernel
解开内核源代码
$tar -xzvf linux-2.4.21.tar.gz

$tar -xjvf linux-2.4.21.tar.bz2
小于 2.4.19 的内核版本解开会生成一个 linux 目录,没带版本号,就将其改名。
$mv linux linux-2.4.x
给 Linux 内核打上你的补丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2
编译内核生成头文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 来代替 menuconfig,但这样用可能会没有设置某些配置文件选项和没有生成下面编译所需的头文件。推荐大家用 make menuconfig,这也是内核开发人员用的最多的配置方法。配置完退出并保存,检查一下的内核目录中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,这是编译 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也说明了你生成了正确的头文件。
还要建立几个正确的链接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc
接下来为你的交叉编译环境建立你的内核头文件的链接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm
也可以把 Linux 内核头文件拷贝过来用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include
回页首
建立二进制工具(binutils)
binutils是一些二进制工具的集合,其中包含了我们常用到的as和ld。
首先,我们解压我们下载的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2
然后进入build-binutils目录配置和编译binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX
--target 选项是指出我们生成的是 arm-linux 的工具,--prefix 是指出我们可执行文件安装的位置。
会出现很多 check,最后产生 Makefile 文件。
有了 Makefile 后,我们来编译并安装 binutils,命令很简单。
$make
$make install
看一下我们 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size
我们来解释一下上面生成的可执行文件都是用来干什么的
add2line - 将你要找的地址转成文件和行号,它要使用 debug 信息。
Ar-产生、修改和解开一个存档文件
As-gnu 的汇编器
C++filt-C++ 和 java 中有一种重载函数,所用的重载函数最后会被编译转化成汇编的标号,c++filt 就是实现这种反向的转化,根据标号得到函数名。
Gasp-gnu 汇编器预编译器。
Ld-gnu 的连接器
Nm-列出目标文件的符号和对应的地址
Obj-将某种格式的目标文件转化成另外格式的目标文件
Objmp-显示目标文件的信息
Ranlib-为一个存档文件产生一个索引,并将这个索引存入存档文件中
Readelf-显示 elf 格式的目标文件的信息
Size-显示目标文件各个节的大小和目标文件的大小
Strings-打印出目标文件中可以打印的字符串,有个默认的长度,为4
Strip-剥掉目标文件的所有的符号信息
回页首
建立初始编译器(bootstrap gcc)
首先进入 build-tools 目录,将下载 gcc 源代码解压
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz
然后进入 gcc-2.95.3 目录给 gcc 打上补丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in
在我们编译并安装 gcc 前,我们先要改一个文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
这一行改为
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果没定义 -Dinhibit,编译时将会报如下的错误
../../gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
../../gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
如果没有定义 -D__gthr_posix_h,编译时会报如下的错误
In file included from gthr-default.h:1,
from ../../gcc-2.95.3/gcc/gthr.h:98,
from ../../gcc-2.95.3/gcc/libgcc2.c:3034:
../../gcc-2.95.3/gcc/gthr-posix.h:37: pthread.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
还有一种与-Dinhibit同等效果的方法,那就是在你配置configure时多加一个参数-with-newlib,这个选项不会迫使我们必须使用newlib。我们编译了bootstrap-gcc后,仍然可以选择任何c库。
接着就是配置boostrap gcc, 后面要用bootstrap gcc 来编译 glibc 库。
$cd ..; cd build-boot-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX \
>--without-headers --enable-languages=c --disable-threads
这条命令中的 -target、--prefix 和配置 binutils 的含义是相同的,--without-headers 就是指不需要头文件,因为是交叉编译工具,不需要本机上的头文件。-enable-languages=c是指我们的 boot-gcc 只支持 c 语言。--disable-threads 是去掉 thread 功能,这个功能需要 glibc 的支持。
接着我们编译并安装 boot-gcc
$make all-gcc
$make install-gcc
我们来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-gcc 、arm-linux-unprotoize、cpp 和 gcov 几个文件。
Gcc-gnu 的 C 语言编译器
Unprotoize-将 ANSI C 的源码转化为 K&R C 的形式,去掉函数原型中的参数类型。
Cpp-gnu的 C 的预编译器
Gcov-gcc 的辅助测试工具,可以用它来分析和优程序。
使用 gcc3.2 以及 gcc3.2 以上版本时,配置 boot-gcc 不能使用 --without-headers 选项,而需要使用 glibc 的头文件。
回页首
建立 c 库(glibc)
首先解压 glibc-2.2.3.tar.gz 和 glibc-linuxthreads-2.2.3.tar.gz 源代码
$cd $PRJROOT/build-tools
$tar -xvzf glibc-2.2.3.tar.gz
$tar -xzvf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
然后进入 build-glibc 目录配置 glibc
$cd build-glibc
$CC=arm-linux-gcc ../glibc-2.2.3/configure --host=$TARGET --prefix="/usr"
--enable-add-ons --with-headers=$TARGET_PREFIX/include
CC=arm-linux-gcc 是把 CC 变量设成你刚编译完的boostrap gcc,用它来编译你的glibc。--enable-add-ons是告诉glibc用 linuxthreads 包,在上面我们已经将它放入了 glibc 源码目录中,这个选项等价于 -enable-add-ons=linuxthreads。--with-headers 告诉 glibc 我们的linux 内核头文件的目录位置。
配置完后就可以编译和安装 glibc
$make
$make install_root=$TARGET_PREFIX prefix="" install
然后你还要修改 libc.so 文件

GROUP ( /lib/libc.so.6 /lib/libc_nonshared.a)
改为
GROUP ( libc.so.6 libc_nonshared.a)
这样连接程序 ld 就会在 libc.so 所在的目录查找它需要的库,因为你的机子的/lib目录可能已经装了一个相同名字的库,一个为编译可以在你的宿主机上运行的程序的库,而不是用于交叉编译的。
回页首
建立全套编译器(full gcc)
在建立boot-gcc 的时候,我们只支持了C。到这里,我们就要建立全套编译器,来支持C和C++。
$cd $PRJROOT/build-tools/build-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX --enable-languages=c,c++
--enable-languages=c,c++ 告诉 full gcc 支持 c 和 c++ 语言。
然后编译和安装你的 full gcc
$make all
$make install
我们再来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-g++ 、arm-linux-protoize 和 arm-linux-c++ 几个文件。
G++-gnu的 c++ 编译器。
Protoize-与Unprotoize相反,将K&R C的源码转化为ANSI C的形式,函数原型中加入参数类型。
C++-gnu 的 c++ 编译器。
到这里你的交叉编译工具就算做完了,简单验证一下你的交叉编译工具。
用它来编译一个很简单的程序 helloworld.c
#include <stdio.h>
int main(void)
{
printf("hello world\n");
return 0;
}
$arm-linux-gcc helloworld.c -o helloworld
$file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1,
dynamically linked (uses shared libs), not stripped
上面的输出说明你编译了一个能在 arm 体系结构下运行的 helloworld,证明你的编译工具做成功了。
转载仅供参考,版权属于原作者

㈣ glibc-2.4-31.54包在哪个目录

要新建一个目录,进入到该目录,使用绝对路径编译安装。
新建一个目录,然后进入该目录,用绝对路径编译。
mkdir \\/usr\\/local\\/glibc
cd \\/usr\\/local\\/glibc
\\/usr\\/local\\/src\\/glibc-2.7\\/configure
make && make install

㈤ 求Linux下的libdl库源码。

你可以从GNU网站下载glibc的源码,libdl库源于glibc源码的dlfcn目录,其中包含dlopen、dlsym等函数的实现。

㈥ linux glibc默认安装在哪

GNU C库(glibc)是标准C库的GNU实现。glibc是GNU工具链的关键组件,用于和二进制工具和编译器一起使用,为目标架构生成用户空间应用程序。
当从源码进行构建时,一些Linux程序可能需要链接到某个特定版本的glibc。在这种情况下,你可能想要检查已安装的glibc信息以查看是否满足依赖关系。
这里介绍几种简单的方法,方便你检查Linux上的glibc版本。
方法一
下面给出了命令行下检查GNU C库的简单命令。
$ ldd --version
在本例中,glibc版本是2.19。
方法二
另一个方法是在命令行“输入”glibc 库的名称(如,libc.so.6),就像命令一样执行。
输出结果会显示更多关于glibc库的详细信息,包括glibc的版本以及使用的GNU编译器,也提供了glibc扩展的信息。glibc变量的位置取决于Linux版本和处理器架构。
在基于Debian的64位系统上:
$ /lib/x86_64-linux-gnu/libc.so.6
在基于Debian的32位系统上:
$ /lib/i386-linux-gnu/libc.so.6
在基于Red Hat的64位系统上:
$ /lib64/libc.so.6
在基于Red Hat的32位系统上:
$ /lib/libc.so.6

㈦ 求助QT5.4 安装在win8.1后无法编译

关于QT安装时出现错误请参照我的上一篇文章http://hi..com/whyme%CE%DE%CF%DE/blog/item/91103d1a71f4aed5e2fe0b65.html
现在说一下编译运行出错的解决办法:
说明:redhat红帽5.4有点太老了,所以运行最新的QT时,出现了各种问题,最主要的就是各种库的问题:
(1)undefined reference to `FcFreeTypeQueryFace'的问题
需要更新fontconfig,我用的是fontconfig-2.6.0.tar.gz,2.5.0我试了,出现了很多错误,不知道为什么2.6.0可以,
附下载地址http://115.com/file/be9m2r
解压到/usr/src 进入后 ./autogen.sh 然后终端中提示make,你就make,最后make install。完成。./autogen.sh也可以输入./configure --sysconfdir=/etc --prefix=/usr --mandir=/usr/share/man 具体可能是./configure后指明了安在你想要安得地方吧(我用的是./autogen.sh)
如果期间遇到错误不要不耐烦,按照提示网络一下会有解决的办法的。
(2)undefined reference to 'FT_Library_SetLcdFilter'
这是由于freetype太旧的原因,也是一样,需要更新:
附下载地址:http://115.com/file/anwcxdfk
安装方法与(1)一样。也有安装(1)时可能有问题要先安装(2) 这个自己尝试吧,我是先(1)后(2)的。
还有就是我的系统是红帽企业版5.4,不是的或者版本不一样的,我不知道我的方法有没有效果。
(3)接下来应该有的例程就可以编译运行了,但是还有不能运行的,那是因为你的glibc太旧了,这个是c动态库。必须注意的是,几乎所有的应用程序都依赖于glibc的动态库,重新编译安装glibc必须非常谨慎,一旦出错可能导致系统无法继续使用。所以强烈建议阅读源码目录下的INSTALL。
附下载地址:http://115.com/file/e749sc6n
第一步是配置glibc,出于安全的考虑,glibc不允许在源码目录树下编译,必须新建一个目录,然后在新建目录下运行configure,我就在/usr/src下建了一个glibc文件夹mkdir glibc。然后在新建目录里运行解压缩文件中的config,在运行这个之前,先在终端运行需要加上优化开关export CFLAGS="-g -O2 -march=i686" ,然后运行../glibc/configure --prefix=/usr --disable-profile --enable-add-ons --with-headers=/usr/include --with-binutils=/usr/bin 这样就不是默认安装的路径了安装在/usr下,这会将glibc安装为linux系统的标准库。
执行make -j 。glibc的编译相当耗时,可以给make加上-j选项并行编译glibc。make -j
然后make install。
make时可能会有错误我就遇到了以下错误,我是这么解决的:
1、在编译glibc的过程中可能出现错误:“../sysdeps/i386/fpu/s_frexp.S:66: Error: invalid identifier for ".ifdef"”,解决方法是:
1)、在glibc源码目录下找到文件:nptl/sysdeps/pthread/pt-initfini.c,找到第46行附近:asm ("\n#include "defs.h"");在其后添加代码:
asm ("\n#if defined __i686 && defined __ASSEMBLER__");
asm ("\n#undef __i686");
asm ("\n#define __i686 __i686");
asm ("\n#endif");
2)、在glibc源码目录下找到文件:sysdeps/unix/sysv/linux/i386/sysdep.h,找到第30行附近:#include <tls.h>,在其后添加代码:
#if defined __i686 && defined __ASSEMBLER__
#undef __i686
#define __i686 __i686
#endif
重新make
2、在编译glibc的过程中可能出现错误:“./sysdeps/i386/i686/multiarch/strcmp.S:78: Error: Error: unrecognized symbol type "gnu_indirect_function"unrecognized symbol type "gnu_indirect_function"”,原因是没有安装新版的binutils,如果依照前面的步骤安装了binutils-2.21应该不会出现该错误。(注第2个错误我没遇到)
注:还有一个地方不知道是哪一步遇到错误了需要安装libxml我在红帽的系统镜像中的server中找到了三个相关文件libxml2*.rpm安装即可!!!!!!
至此,重启reboot,打开QT运行例程,可能还有问题,我的就是还是有问题,解决办法如下:
把QT的安装目录和QT中的bin都添加为环境变量,在/etc/profile下,具体怎么填您应该知道吧,这里不提了。source /etc/profile一下
然后再点击QT的左边栏的项目在构建和运行的选项中,您可能哪里没有选择,一定要让你的项目有效和目录正确,QT的版本正确!!!QT的gcc编译目录正确,gcc一般用的是QT文件中自带的!!如果还不行,那就在你的在项目目录项运行make clean!!如果还不对!!!vi Makefile 可能是这里有问题,如果不会改,就干脆删了rm Makefiel。然后再在QT中运行一下。

㈧ Linux 之mutex 源码分析

 mutex相关的函数并不是linux kernel实现的,而是glibc实现的,源码位于nptl目录下。

http://ftp.gnu.org/pub/gnu/glibc/glibc-2.3.5.tar.gz

首先说数据结构:

typedef union

{

  struct

  {

    int __lock;

    unsigned int __count;

    int __owner;

    unsigned int __nusers;

    /* KIND must stay at this position in the structure to maintain

       binary compatibility.  */

    int __kind;

    int __spins;

  } __data;

  char __size[__SIZEOF_PTHREAD_MUTEX_T];

  long int __align;

} pthread_mutex_t;

 int __lock;  资源竞争引用计数

 int __kind; 锁类型,init 函数中mutexattr 参数传递,该参数可以为NULL,一般为 PTHREAD_MUTEX_NORMAL

结构体其他元素暂时不了解,以后更新。

/*nptl/pthread_mutex_init.c*/

int

__pthread_mutex_init (mutex, mutexattr)

     pthread_mutex_t *mutex;

     const pthread_mutexattr_t *mutexattr;

{

  const struct pthread_mutexattr *imutexattr;

  assert (sizeof (pthread_mutex_t) <= __SIZEOF_PTHREAD_MUTEX_T);

  imutexattr = (const struct pthread_mutexattr *) mutexattr ?: &default_attr;

  /* Clear the whole variable.  */

  memset (mutex, '\0', __SIZEOF_PTHREAD_MUTEX_T);

  /* Copy the values from the attribute.  */

  mutex->__data.__kind = imutexattr->mutexkind & ~0x80000000;

  /* Default values: mutex not used yet.  */

  // mutex->__count = 0;        already done by memset

  // mutex->__owner = 0;        already done by memset

  // mutex->__nusers = 0;        already done by memset

  // mutex->__spins = 0;        already done by memset

  return 0;

}

init函数就比较简单了,将mutex结构体清零,设置结构体中__kind属性。

/*nptl/pthread_mutex_lock.c*/

int

__pthread_mutex_lock (mutex)

     pthread_mutex_t *mutex;

{

  assert (sizeof (mutex->__size) >= sizeof (mutex->__data));

  pid_t id = THREAD_GETMEM (THREAD_SELF, tid);

  switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))

    {

     …

    default:

      /* Correct code cannot set any other type.  */

    case PTHREAD_MUTEX_TIMED_NP:

    simple:

      /* Normal mutex.  */

      LLL_MUTEX_LOCK (mutex->__data.__lock);

      break;

  …

  }

  /* Record the ownership.  */

  assert (mutex->__data.__owner == 0);

  mutex->__data.__owner = id;

#ifndef NO_INCR

  ++mutex->__data.__nusers;

#endif

  return 0;

}

该函数主要是调用LLL_MUTEX_LOCK, 省略部分为根据mutex结构体__kind属性不同值做些处理。

宏定义函数LLL_MUTEX_LOCK最终调用,将结构体mutex的__lock属性作为参数传递进来

#define __lll_mutex_lock(futex)                                                \

  ((void) ({                                                                \

    int *__futex = (futex);                                                \

    if (atomic_compare_and_exchange_bool_acq (__futex, 1, 0) != 0)        \

      __lll_lock_wait (__futex);                                        \

  }))

atomic_compare_and_exchange_bool_acq (__futex, 1, 0)宏定义为:

#define atomic_compare_and_exchange_bool_acq(mem, newval, oldval) \

  ({ __typeof (mem) __gmemp = (mem);                                      \

     __typeof (*mem) __gnewval = (newval);                              \

      \

     *__gmemp == (oldval) ? (*__gmemp = __gnewval, 0) : 1; })

这个宏实现的功能是:

如果mem的值等于oldval,则把newval赋值给mem,放回0,否则不做任何处理,返回1.

由此可以看出,当mutex锁限制的资源没有竞争时,__lock 属性被置为1,并返回0,不会调用__lll_lock_wait (__futex); 当存在竞争时,再次调用lock函数,该宏不做任何处理,返回1,调用__lll_lock_wait (__futex);

void

__lll_lock_wait (int *futex)

{

  do

    {

      int oldval = atomic_compare_and_exchange_val_acq (futex, 2, 1);

      if (oldval != 0)

lll_futex_wait (futex, 2);

    }

  while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0);

}

atomic_compare_and_exchange_val_acq (futex, 2, 1); 宏定义:

/* The only basic operation needed is compare and exchange.  */

#define atomic_compare_and_exchange_val_acq(mem, newval, oldval) \

  ({ __typeof (mem) __gmemp = (mem);                                      \

     __typeof (*mem) __gret = *__gmemp;                                      \

     __typeof (*mem) __gnewval = (newval);                              \

      \

     if (__gret == (oldval))                                              \

       *__gmemp = __gnewval;                                              \

     __gret; })

这个宏实现的功能是,当mem等于oldval时,将mem置为newval,始终返回mem原始值。

此时,futex等于1,futex将被置为2,并且返回1. 进而调用

lll_futex_wait (futex, 2);

#define lll_futex_timed_wait(ftx, val, timespec)                        \

({                                                                        \

   DO_INLINE_SYSCALL(futex, 4, (long) (ftx), FUTEX_WAIT, (int) (val),        \

     (long) (timespec));                                \

   _r10 == -1 ? -_retval : _retval;                                        \

})

该宏对于不同的平台架构会用不同的实现,采用汇编语言实现系统调用。不过确定的是调用了Linux kernel的futex系统调用。

futex在linux kernel的实现位于:kernel/futex.c

SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,

struct timespec __user *, utime, u32 __user *, uaddr2,

u32, val3)

{

struct timespec ts;

ktime_t t, *tp = NULL;

u32 val2 = 0;

int cmd = op & FUTEX_CMD_MASK;

if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||

      cmd == FUTEX_WAIT_BITSET ||

      cmd == FUTEX_WAIT_REQUEUE_PI)) {

if (_from_user(&ts, utime, sizeof(ts)) != 0)

return -EFAULT;

if (!timespec_valid(&ts))

return -EINVAL;

t = timespec_to_ktime(ts);

if (cmd == FUTEX_WAIT)

t = ktime_add_safe(ktime_get(), t);

tp = &t;

}

/*

 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.

 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.

 */

if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||

    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)

val2 = (u32) (unsigned long) utime;

return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);

}

futex具有六个形参,pthread_mutex_lock最终只关注了前四个。futex函数对参数进行判断和转化之后,直接调用do_futex。

long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,

u32 __user *uaddr2, u32 val2, u32 val3)

{

int clockrt, ret = -ENOSYS;

int cmd = op & FUTEX_CMD_MASK;

int fshared = 0;

if (!(op & FUTEX_PRIVATE_FLAG))

fshared = 1;

clockrt = op & FUTEX_CLOCK_REALTIME;

if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)

return -ENOSYS;

switch (cmd) {

case FUTEX_WAIT:

val3 = FUTEX_BITSET_MATCH_ANY;

case FUTEX_WAIT_BITSET:

ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);

break;

         …

default:

ret = -ENOSYS;

}

return ret;

}

省略部分为对其他cmd的处理,pthread_mutex_lock函数最终传入的cmd参数为FUTEX_WAIT,所以在此只关注此分之,分析futex_wait函数的实现。

static int futex_wait(u32 __user *uaddr, int fshared,

      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)

{

struct hrtimer_sleeper timeout, *to = NULL;

struct restart_block *restart;

struct futex_hash_bucket *hb;

struct futex_q q;

int ret;

           … … //delete parameters check and convertion

retry:

/* Prepare to wait on uaddr. */

ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);

if (ret)

goto out;

/* queue_me and wait for wakeup, timeout, or a signal. */

futex_wait_queue_me(hb, &q, to);

… … //other handlers

return ret;

}

futex_wait_setup 将线程放进休眠队列中,

futex_wait_queue_me(hb, &q, to);将本线程休眠,等待唤醒。

唤醒后,__lll_lock_wait函数中的while (atomic_compare_and_exchange_bool_acq (futex, 2, 0) != 0); 语句将被执行,由于此时futex在pthread_mutex_unlock中置为0,所以atomic_compare_and_exchange_bool_acq (futex, 2, 0)语句将futex置为2,返回0. 退出循环,访问用户控件的临界资源。

/*nptl/pthread_mutex_unlock.c*/

int

internal_function attribute_hidden

__pthread_mutex_unlock_usercnt (mutex, decr)

     pthread_mutex_t *mutex;

     int decr;

{

  switch (__builtin_expect (mutex->__data.__kind, PTHREAD_MUTEX_TIMED_NP))

    {

   … …

    default:

      /* Correct code cannot set any other type.  */

    case PTHREAD_MUTEX_TIMED_NP:

    case PTHREAD_MUTEX_ADAPTIVE_NP:

      /* Normal mutex.  Nothing special to do.  */

      break;

    }

  /* Always reset the owner field.  */

  mutex->__data.__owner = 0;

  if (decr)

    /* One less user.  */

    --mutex->__data.__nusers;

  /* Unlock.  */

  lll_mutex_unlock (mutex->__data.__lock);

  return 0;

}

省略部分是针对不同的__kind属性值做的一些处理,最终调用 lll_mutex_unlock。

该宏函数最终的定义为:

#define __lll_mutex_unlock(futex)                        \

  ((void) ({                                                \

    int *__futex = (futex);                                \

    int __val = atomic_exchange_rel (__futex, 0);        \

\

    if (__builtin_expect (__val > 1, 0))                \

      lll_futex_wake (__futex, 1);                        \

  }))

atomic_exchange_rel (__futex, 0);宏为:

#define atomic_exchange_rel(mem, value) \

  (__sync_synchronize (), __sync_lock_test_and_set (mem, value))

实现功能为:将mem设置为value,返回原始mem值。

__builtin_expect (__val > 1, 0) 是编译器优化语句,告诉编译器期望值,也就是大多数情况下__val > 1 ?是0,其逻辑判断依然为if(__val > 1)为真的话执行 lll_futex_wake。

现在分析,在资源没有被竞争的情况下,__futex 为1,那么返回值__val则为1,那么 lll_futex_wake (__futex, 1);        不会被执行,不产生系统调用。 当资源产生竞争的情况时,根据对pthread_mutex_lock 函数的分析,__futex为2, __val则为2,执行 lll_futex_wake (__futex, 1); 从而唤醒等在临界资源的线程。

lll_futex_wake (__futex, 1); 最终会调动同一个系统调用,即futex, 只是传递的cmd参数为FUTEX_WAKE。

在linux kernel的futex实现中,调用

static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)

{

struct futex_hash_bucket *hb;

struct futex_q *this, *next;

struct plist_head *head;

union futex_key key = FUTEX_KEY_INIT;

int ret;

if (!bitset)

return -EINVAL;

ret = get_futex_key(uaddr, fshared, &key);

if (unlikely(ret != 0))

goto out;

hb = hash_futex(&key);

spin_lock(&hb->lock);

head = &hb->chain;

plist_for_each_entry_safe(this, next, head, list) {

if (match_futex (&this->key, &key)) {

if (this->pi_state || this->rt_waiter) {

ret = -EINVAL;

break;

}

/* Check if one of the bits is set in both bitsets */

if (!(this->bitset & bitset))

continue;

wake_futex(this);

if (++ret >= nr_wake)

break;

}

}

spin_unlock(&hb->lock);

put_futex_key(fshared, &key);

out:

return ret;

}

该函数遍历在该mutex上休眠的所有线程,调用wake_futex进行唤醒,

static void wake_futex(struct futex_q *q)

{

struct task_struct *p = q->task;

/*

 * We set q->lock_ptr = NULL _before_ we wake up the task. If

 * a non futex wake up happens on another CPU then the task

 * might exit and p would dereference a non existing task

 * struct. Prevent this by holding a reference on p across the

 * wake up.

 */

get_task_struct(p);

plist_del(&q->list, &q->list.plist);

/*

 * The waiting task can free the futex_q as soon as

 * q->lock_ptr = NULL is written, without taking any locks. A

 * memory barrier is required here to prevent the following

 * store to lock_ptr from getting ahead of the plist_del.

 */

smp_wmb();

q->lock_ptr = NULL;

wake_up_state(p, TASK_NORMAL);

put_task_struct(p);

}

wake_up_state(p, TASK_NORMAL);  的实现位于kernel/sched.c中,属于linux进程调度的技术。

㈨ gcc编译时默认使用的库在哪个目录(是标准C库,还是glibc库 )

看你包含的头文件和使用的函数啊~两者包含的函数不一样~
你要是使用fopen/memcpy等等这样标准C的函数,当然会在链接时使用到标准C库(ANSI C),如果你使用了read/write这些glibc库实现的函数,肯定就在链接时使用到glibc库~

具体使用了什么库,要看你调用的函数了~可能不会仅仅只包含一个库~

Linux下,库的路径一般是:/lib,/usr/lib,/usr/local/lib等,这些路径一般会在/etc/ld.so.conf 中标记出来,如果需要添加特殊位置的库,可以把库的路径添加到/etc/ld.so.conf中去,并且执行ldconfig来使得新路径立即生效~

http://linux.die.net/man/8/ldconfig

㈩ 多线程库的源码在哪,为啥在glibc里面没有

Linux下的glic库的源码链接:
http://ftp.gnu.org/gnu/glibc/,你可以下载最新版本的glibc-2.24.tar.gz这个压缩文件,在Windows系统下直接用WinRAR解压即可,如果在Linux系统下用命令行解压的话,命令如下:tar -xzvf glibc-2.24.tar.gz。

阅读全文

与glibc源码在哪个目录相关的资料

热点内容
php取现在时间 浏览:246
单片机高吸收 浏览:427
怎么区分五代头是不是加密喷头 浏览:244
hunt测试服务器是什么意思 浏览:510
2013程序员考试 浏览:641
毕业论文是pdf 浏览:736
服务器跑网心云划算吗 浏览:471
单片机定时器计数初值的计算公式 浏览:801
win7控制台命令 浏览:567
猫咪成年app怎么升级 浏览:692
360有没有加密软件 浏览:315
清除cisco交换机配置命令 浏览:751
华为删除交换机配置命令 浏览:473
shell打包命令 浏览:827
加密狗插上输不了密码 浏览:187
大学单片机相关科目 浏览:23
自己建了服务器地址 浏览:698
命令按钮的属性设置 浏览:965
证券技术分析pdf 浏览:779
linux命令连接oracle 浏览:202