导航:首页 > 源码编译 > 蚁群算法数学模型

蚁群算法数学模型

发布时间:2022-12-26 12:35:57

❶ 帮忙翻译一下论文的摘要

Abstract
Logistics and distribution logistics activities is directly connected to the link with consumers. In the cost of logistics, distribution costs account for a very high percentage. Distribution lines for the reasonable or not the speed of delivery, costs, benefits greatly affected, especially the multi-user distribution lines to identify more complex. Use a scientific and rational approach to optimize the distribution lines, distribution is a very important event.
Usually that the distribution is close, low-volume, variety is more complicated, according to user needs with the number and variety of service system. From the distribution center for goods to the various users, there are many different route options. A reasonable choice distribution line, for the enterprise and society have a very important significance. The enterprise: (1) optimize the distribution routes, can improve the efficiency of distribution, the distribution of vehicles to the best use possible of the lower distribution costs. (2) can be on time, to quickly deliver the hands of customers, can greatly improve customer satisfaction. (3) help enterprises improve their efficiency.
The community, it can save transport vehicles to ease the traffic tension, rece noise, emissions, and other transportation pollution, to protect the ecological balance, and to contribute to creating a better home. To optimize the distribution line, must have clear objectives, follow the basic principles.
This paper first to optimize the distribution of the research carried out summary, for distribution in the restrictive conditions, the establishment of a logistics and distribution model. Ant algorithm used to optimize logistics and distribution lines, for ant algorithm characteristics and distribution of the mathematical model used to establish a logistics and distribution lines of the ant algorithm optimization model.

Key words: logistics and distribution, path optimization, ant algorithms, mathematical models,

❷ 蚁群算法及其应用实例

       蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种对自然界蚂蚁的寻径方式进行模拟而得到的一种仿生算法,是一种用来在图中寻找优化路径的机率型算法。
       蚂蚁在运动过程中,可以在行走的路径上留下信息素,后来的蚂蚁可以感知到信息素的存在,信息素浓度越高的路径越容易被后来的蚂蚁选择,从而形成一种正反馈现象。
       它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。这也就是着名的旅行商问题(Traveling Saleman Problem,TSP)。

       若蚂蚁从A点出发到D点觅食,它可以随机从ABD或ACD中选择一条路。假设初始时为每条路分配一只蚂蚁,每个时间单位行走一步,则经过8个时间单位后,情形如下图所示:ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。

       那么,再过8个时间单位,很容易可以得到下列情形:ABD路线的蚂蚁回到A点,ACD路线的蚂蚁到达D点。

α 代表信息素量对是否选择当前路径的影响程度,反映了蚁群在路径搜索中随机性因素作用的强度。
α 越大,蚂蚁选择以前走过的路径的可能性越大,搜索的随机性就会减弱。
α 过小,会导致蚁群搜索过早陷入局部最优,取值范围通常为[1,4]。

β 反映了启发式信息在指导蚁群搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度。
β 过大,虽然收敛速度加快,但是易陷入局部最优。
β 过小,蚁群易陷入纯粹的随机搜索,很难找到最优解。通常取[0,5]。

ρ 反映了信息素的蒸发程度,相反,1-ρ 表示信息素的保留水平
ρ 过大,信息素会发过快,容易导致最优路径被排除。
ρ 过小,各路径上信息素含量差别过小,以前搜索过的路径被在此选择的可能性过大,会影响算法的随机性和全局搜索能力。通常取[0.2,0.5]。

m过大,每条路径上信息素趋于平均,正反馈作用减弱,从而导致收敛速度减慢。
m过小,可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低

总信息量Q对算法性能的影响有赖于αβρ的选取,以及算法模型的选择。
Q对ant-cycle模型蚁群算法的性能没有明显影响,不必特别考虑,可任意选取。

❸ 那位高手帮我翻译成英语

这样的,很简单:

Abstract: now, logistics and distribution of the logistics instry is the key problem. The logistics distribution center of problems including logistics location and selection of the logistics transport path. This paper studies the choice of logistics distribution path, what is introced and its logistics development trend and build a mathematical model of logistics. Logistics is a kind of path optimization problems to solve this problem, the np-hard algorithms usually use heuristic algorithm. This paper mainly introces the heuristic algorithm of ant colony algorithm, the ant colony algorithm in last century Italy origo M.D scholars put forward such people caught the attention, it is often used in solving the problem of optimized combination. Ant colony algorithm is a kind of simulation ant-foraging process of heuristic algorithm, this paper introces the concept of ant colony algorithm is analyzed, and the development trend of ant colony algorithm, the basic principle of the general establishment mathematical model of ant colony algorithm, and puts forward its typical applications. Combining logistics distribution model is put forward based on ant colony algorithm of logistics distribution model, combined with concrete examples verify the feasibility of the algorithm.

以上仅供你参考,详细的你还可以改改。

❹ 人类造出的仿生武器,是从昆虫身上获得的哪些灵感

人类吹嘘自己是地球上唯一拥有先进智慧的生物。他们在与自然抗争的同时,创造了文明,发展了科学技术。各种技术和发明弥补了人类的不足,但人类仍然面临着困难。在几十亿年的进化中,生物体通过无数的失败和牺牲完美地解决了许多问题。因此,人类应该向自然学习,从中汲取灵感。



一旦这两种物质混合,它们就会在酶的作用下迅速反应——沸腾和爆发。美国军事专家已经开发出一种非常先进的二元化学武器,将化学物质储存在不同的容器中。炮弹一旦发射,横膈膜就会破裂,导弹飞行后几秒钟内,这种混合物就会发生反应,最终起到杀敌的作用。然而,人们希望仿生学能为人类的利益服务,而不是为战争服务。

❺ 科学家如何把蚂蚁的信息素转换为数学公式

分类: 理工学科
问题描述:

昨天看纪实频道,他说蚂蚁公式可以更方便的调节交通,运输等,我很好奇,请问下哪位知道,蚂蚁公式是什么样的?而且怎么转换的啊?谢谢了

解析:

看样子楼主已经知道了信息素这个概念,在此我也不赘述了。

目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:

1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。

2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。

3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。

每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。

关键的部分在于步骤2和3:

步骤2中,每只蚂蚁都要作出选择,怎样选择呢?

selection过程用一个简单的函数实现:

蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和

假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:

p(i,j)=τ(i,j)/∑τ(i)

(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)

步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)

evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数

ρ(k)=1-lnk/ln(k+1)

最初设定每条路径的信息素τ(i,j,0)为相同的值

然后,第k+1次迭代时,信息素的多少

对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了

有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W为所有点的 ***

为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。

组合优化很有意思的,像禁忌搜索、模拟退火、蚁群算法、遗传算法、神经网络这些算法能够解决很多生活中的实际问题,楼主有空可以招本书看看。

❻ 蚁群算法的内容

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

❼ 遗传算法,蚁群算法和粒子群算法都是什么算法

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

❽ 蚁群算法原理及其应用的图书目录

第1章 绪论
1.1 引言
1.2 蚂蚁的生物学特征
1.3 蚁群算法的思想起源
1.4 蚁群算法的研究进展
1.5 本书的体系结构
1.6 本章 小结
参考文献
第2章 基本蚁群算法原理及其复杂度分析
2.1 引言
2.2 基本蚁群算法的原理
2.3 基本蚁群算法的系统学特征
2.4 基本蚁群算法的数学模型
2.5 基本蚁群算法的具体实现
2.6 基本蚁群算法的复杂度分析
2.7 基本蚁群算法的性能评价指标
2.8 本章 小结
参考文献
第3章 蚁群算法的收敛性研究
3.1 引言
3.2 图搜索蚂蚁系统(GBAS)的收敛性研究
3.3 一类改进蚁群算法的收敛性证明
3.4 GBAS/tdev和GBAS/tdlb的确定性收敛证明
3.5 基本蚁群算法的A.S.收敛性研究
3.6 一类分布式蚂蚁路由算法的收敛性研究
3.7 基于分支路由和Wiener过程的蚁群算法收敛性证明
3.8 一种简单蚁群算法及其收敛性分析
3.9 遗传一蚁群算法的Markov收敛性分析
3.1 0一类广义蚁群算法(GACA)的收敛性分析
3.1 1本章 小结
参考文献
第4章 蚁群算法的实验分析及参数选择原则
4.1 引言
4.2 蚁群行为和参数对算法性能影响的实验分析
4.3 蚁群算法参数最优组合的“三步走”方法
4.4 本章 小结
参考文献
第5章 离散域蚁群算法的改进研究
5.1 引言
5.2 自适应蚁群算法
5.3 基于去交叉局部优化策略的蚁群算法
5.4 基于信息素扩散的蚁群算法
5.5 多态蚁群算法
5.6 基于模式学习的小窗口蚁群算法
5.7 基于混合行为的蚁群算法
5.8 带聚类处理的蚁群算法
5.9 基于云模型理论的蚁群算法
5.1 0具有感觉和知觉特征的蚁群算法
5.1 1具有随机扰动特性的蚁群算法
5.1 2基于信息熵的改进蚁群算法
5.1 3本章 小结
参考文献
第6章 连续域蚁群算法的改进研究
6.1 引言
6.2 基于网格划分策略的连续域蚁群算法
6.3 基于信息量分布函数的连续域蚁群算法
6.4 连续域优化问题的自适应蚁群算法
6.5 基于交叉变异操作的连续域蚁群算法
6.6 嵌入确定性搜索的连续域蚁群算法
6.7 基于密集非递阶的连续交互式蚁群算法(cIACA)
6.8 多目标优化问题的连续域蚁群算法
6.9 复杂多阶段连续决策问题的动态窗口蚁群算法
6.1 0本章 小结
参考文献
第7章 蚁群算法的典型应用
7.1 引言
7.2 车间作业调度问题
7.3 网络路由问题
7.4 车辆路径问题
7.5 机器人领域
7.6 电力系统
7.7 故障诊断
7.8 控制参数优化
7.9 系统辨识
7.1 0聚类分析
7.1 1数据挖掘
7.1 2图像处理
7.1 3航迹规划
7.1 4空战决策
7.1 5岩土工程
7.1 6化学工业
7.1 7生命科学
7.1 8布局优化
7.1 9本章 小结
参考文献
第8章 蚁群算法的硬件实现
8.1 引言
8.2 仿生硬件概述
8.3 基于FPGA的蚁群算法硬件实现
8.4 基于蚁群算法和遗传算法动态融合的软硬件划分
8.5 本章 小结
参考文献
第9章 蚁群算法同其他仿生优化算法的比较与融合
9.1 引言
9.2 其他几种仿生优化算法的基本原理
9.3 蚁群算法与其他仿生优化算法的异同比较
9.4 蚁群算法与遗传算法的融合
9.5 蚁群算法与人工神经网络的融合
9.6 蚁群算法与微粒群算法的融合
9.7 蚁群算法与人工免疫算法的融合
9.8 本章 小结
参考文献
第10章 展望
10.1 引言
10.2 蚁群算法的模型改进
10.3 蚁群算法的理论分析
10.4 蚁群算法的并行实现
10.5 蚁群算法的应用领域
10.6 蚁群算法的硬件实现
10.7 蚁群算法的智能融合
10.8 本章 小结
参考文献
附录A基本蚁群算法程序
A.1 C语言版
A.2 Matlab语言版
A.3 VisualBasic语言版
附录B相关网站
附录C基本术语(中英文对照)及缩略语
附录D(词一首)鹧鸪天蚁群算法

❾ 什么是蚁群算法

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值.
蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题。由柳洪平创建。
预期的结果:
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
原理:
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
问题:
说了这么多,蚂蚁究竟是怎么找到食物的呢?
在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
引申
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。
蚁群算法的实现
下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。

❿ MATLAB建模方法有哪些

建模覆盖的内容很广,可以分为两大块:优化和统计,因此建模方法也可以由这两大块划分。

一.优化:

  1. 智能算法: 遗传算法,粒子群算法,模拟退火算法,蚁群算法...

  2. 基础优化算法: 目标规划,整数规划...

  3. 排队论

二.统计:

  1. 分类/聚类算法: k-means...

  2. 预测: 时间序列算法,灰色预测算法,指数平滑算法,

  3. 评价: 模糊综合评价,信息熵评价,粗糙集,数据包络分析,层次分析,

  4. 智能算法:神经网络,svm...

  5. 回归/拟合:多元线性拟合,最小二乘法

  6. 数据处理:小波变换


阅读全文

与蚁群算法数学模型相关的资料

热点内容
单片机高吸收 浏览:427
怎么区分五代头是不是加密喷头 浏览:244
hunt测试服务器是什么意思 浏览:510
2013程序员考试 浏览:641
毕业论文是pdf 浏览:736
服务器跑网心云划算吗 浏览:471
单片机定时器计数初值的计算公式 浏览:801
win7控制台命令 浏览:567
猫咪成年app怎么升级 浏览:692
360有没有加密软件 浏览:315
清除cisco交换机配置命令 浏览:751
华为删除交换机配置命令 浏览:473
shell打包命令 浏览:827
加密狗插上输不了密码 浏览:187
大学单片机相关科目 浏览:23
自己建了服务器地址 浏览:698
命令按钮的属性设置 浏览:965
证券技术分析pdf 浏览:779
linux命令连接oracle 浏览:202
垫江停车收费桩怎么上App 浏览:135