❶ 人工智能常用训练方法有哪些
有四种方法如下:
1、监督式学习。
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。
在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。
2、强化学习。
在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。
3、非监督式学习。
在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。
4、半监督式学习。
在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。
应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。
❷ 各类场景应用中涉及的AI算法汇总
整理了各类场景应用中AI算法
一、图像CV
内容安全,目标检测,图像识别,智能视觉生产,图像搜索,图像分割,物体检测,图像分类,图像标签,名人识别,概念识别,场景识别,物体识别,场景分析,智能相册,内容推荐,图库管理,网红人物识别,明星人物识别,图像搜索,商品图片搜索,版权图片搜索,通用图片搜索,车牌识别,垃圾分类,车辆检测,菜品识别,车型识别,犬类识别,实例分割,风格迁移,智能填充,智能识图,拍照搜商品,精准广告投放,电商导购,图像分析,图像理解,图像处理,图像质量评估,场景识别,物体识别,场所识别,图像自训练平台,图像分类,目标检测,图像分割,关键点检测,图像生成,场景文字识别,度量学习,图像识别,图像比对,图像分类使用手册,图像分类API文档目标检测使用手册,目标检测API文档Logo检测使用手册,Logo检测API文档,通用图片搜索,车牌识别,垃圾分类,车辆检测,车型识别,犬类识别,实例分割,风格迁移,智能填充,车牌识别,相册聚类,场景与物体识别,无限天空,图像识别引擎,黄色图片识别,暴力图像识别,工业轮胎智能检测,肋骨骨折识别,显微识别,图像处理,广告识别,人脸算法,人体算法,图像识别,图像增强,OCR,图像处理,ZoomAI,智能贴图,智能制作,质量评价,图像识别,智能鉴黄,图像识别,实时手写识别,唇语识别,通用文字识别,手写文字识别,图像技术,图像识别,图像审核,图像搜索,图像增强,图像特效,车辆分析,图像生成,绘画机器人独家,动漫化身独家,像素风独家,超清人像独家,图像融合,换脸技术,神奇变脸,图像风格化,证件照生成,线稿图像识别,宝宝检测,图像分类,圉像深度估计,天空分割,食物分割,猫狗脸技术,食物识别独家,图像美学评分,车辆分析,车型识别,车型识别(含指导价),车型识别(含配置参数),车标识别,人脸识别(活体),车牌识别,表情识别,安全帽识别,计算机影像,计算机视觉,聚焦光学字符识别、人脸识别、质检、感知、理解、交互,图像视频分析,Logo检测,内容审核,智能批改,笔记评估,思维导图评估,物体检测,物体识别。
二、人脸、体态、眼瞳、声音、指纹
人脸分割人脸识别,无,人体分析HAS,识别人的年龄,性别,穿着信息,客流统计分析,智能客服,热点区域分析,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,换脸甄别,人脸支付,人脸核身,人像变换,人脸试妆,人脸融合,人体分析,手势识别,人脸验证与检索,人脸比对,人脸比对sensetime,人脸水印照比对,静默活体检测,静默活体检测sensetime,人脸检测和属性分析,人脸特征分析tuputech,配合式活体检测,人脸安防,计算机视觉,智能应用服务,人脸查询人脸分析人脸统计名单库管理人脸布控,人脸应用,人体应用,人体查询,车辆查询车辆分析车辆统计车辆布控车辆名单库管理,车辆应用,人脸图像识别人体图像识别车辆图像识别,图像识别,图像比对,人脸比对,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,人脸检测,人脸比对,人脸搜索,人脸关键点,稠密关键点,人脸属性,情绪识别,颜值评分,视线估计,皮肤分析,3D人脸重建,面部特征分析人体识别,人体检测,人体关键点,人体抠像,人体属性,手势识别人像处理,美颜美型,人脸融合,滤镜,声纹识别支付,语音合成,语音合成,声纹识别,语音唤醒,人脸识别引擎,摄像头人脸识别,图片人脸检测,身份识别,人脸识别,人脸属性,人体识别,声纹识别,衣服检索及聚类,语音分析,声纹识别,说话人归档,人脸和人体识别,人脸检测,手势识别,人脸与人体识别,人脸识别云服务,人脸识别私有化,人脸离线识别SDK,人脸实名认证,人像特效,人体分析,人脸技不,皮肤分析独家,头部分割,宏观人脸分析,人脸关键点检测,微观人脸分析独家,头发分析独家,五官分割,头发分割人体技术,人体外轮廓点检测独家,精细化人像抠图,人体框检测,肢体关键点检测,人像分割,服饰识别,手势识别,皮肤分割,人脸,说话人识别,人脸检测识别,人脸1:1比对,人脸检测,AI人脸/人形车辆,大数据人像图片防伪,QoS保障,CDN,表情识别,举手动作识别,人脸检测,网络切片,边缘计算,人脸分析,人脸检测,人脸搜索,人体分析,手势识别,着装检测,人脸识别,行为检测,人脸识别,人形检测,行为分析,人脸检测,人脸跟踪,人脸比对,人脸查找,人脸属性分析,活体检测,声音指纹,声纹识别。
三、视频
视频分割、视频处理、视频理解、智能视觉、多媒体,视频内容分析,人体动作监控,视频分类,智能交通,人/动物轨迹分析,目标计数,目标跟踪,视频编辑-,精彩片段提取,新闻视频拆分,视频摘要,视频封面,视频拆条,视频标签-,视频推荐,视频搜索,视频指纹-,数字版权管理,广告识别,视频快速审核,视频版权,视频查重,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,无,无,视频,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,菜品识别,视频识别引擎,结肠息肉检测,胃镜评估系统,视频标签,场景识别,客流分析,手势识别,视频技术,短视频标签,视觉看点识别,动态封面图自动生成,智能剪辑,新闻拆条,智能插帧,视频技术,多模态媒资检索公测中,媒体内容分析,媒体内容审核,视频生成,视频动作识别,
四、ocr文字识别
手写识别,票据识别,通用文档,通用卡证,保险智能理赔,财税报销电子化,证照电子化审批,票据类文字识别,行业类文字识别,证件类文字识别,通用类文字识别,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,增值税发票核验,营业执照核验,智能扫码,行业文档识别, 汽车 相关识别,票据单据识别,卡证文字识别,通用文字识别,手写文字识别,印刷文字识别,银行卡识别,名片识别,身份证识别intsig,营业执照识别intsig,增值税发票识别intsig,拍照速算识别,公式识别,指尖文字识别,驾驶证识别JD,行驶证识别JD,车牌识别JD,身份证识别,增值税发票识别,营业执照识别,火车票识别,出租车发票识别,印刷文字识别(多语种),印刷文字识别(多语种)intsig内容审核,色情内容过滤,政治人物检查,暴恐敏感信息过滤,广告过滤,OCR自定义模板使用手册,OCR自定义模板API文档,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,身份证识别,驾驶证识别,行驶证识别,银行卡识别,通用文字识别,自定义模板文字识别,文字识别引擎,身份证识别,图片文字识别,通用文字识别,身份证识别,名片识别,光学字符识别服务,通用文字识别,手写体文字识别,表格识别,整题识别(含公式),购物小票识别,身份证识别,名片识别,自定义模板文字识别,文字识别,通用文字识别,银行卡识别,身份证识别,字幕识别,网络图片识别, 游戏 直播关键字识别,新闻标题识别,OCR文字识别,通用场景文字识别,卡证文字识别,财务票据文字识别,医疗票据文字识别, 汽车 场景文字识别,教育场景文字识别,其他场景文字识别,iOCR自定义模板文字识别,通用类OCR,通用文本识别(中英)通用文本识别(多语言)通用表格识别,证照类OCR,身份证社保卡户口本护照名片银行卡结婚证离婚证房产证不动产证,车辆相关OCR,行驶证驾驶证车辆合格证车辆登记证,公司商铺类OCR,商户小票税务登记证开户许可证营业执照组织机构代码证,票据类OCR,增值税发票增值税卷票火车票飞机行程单出租车发票购车发票智能技术,票据机器人证照机器人文本配置机器人表格配置机器人框选配置机器人,文字识别,行驶证识别,驾驶证识别,表单识别器,通用文本,财务票据识别,机构文档识别,个人证件识别,车辆相关识别,通用表格,印章识别,财报识别,合同比对,识别文字识别,签名比对,OCR识别,教育OCR,印刷识别,手写识别,表格识别,公式识别,试卷拆录
五、自然语言NPL
文本相似度,文本摘要,文本纠错,中心词提取,文本信息抽取,智能文本分类,命名实体,词性标注,多语言分词,NLP基础服务,地址标准化,商品评价解析智能短信解析,机器阅读理解,金融研报信息识别,法律案件抽取,行业问答推理,行业知识图谱构建,文本实体关系抽取,搜索推荐,知识问答,短文本相似度,文本实体抽取, 情感 倾向分析,兴趣画像匹配,文本分类-多标签,文本分类-单标签,定制自然语言处理,语言生成,语言理解,自然语言处理基础,文本摘要,数据转文字,文本生成,智能问答系统,内容推荐,评价分析,文本分类,对话理解,意图理解, 情感 分析,观点抽取,中文分词,短文本相似度,关键词提取,词向量,命名实体,识别依存,句法分析, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取,词法分析, 情感 分析,关键词提取,用户评论分析,资讯热点挖掘,AIUI人机交互,文本纠错,词法分析,依存句法分析,语义角色标注,语义依存分析(依存树),语义依存分析(依存图), 情感 分析,关键词提取,NLP能力生产平台,NLP基础技术,中文词法分析-LAC,词向量—Word2vec,语言模型—Language_model,NLP核心技术, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,信息检索、新闻推荐、智能客服, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,机器问答、自然语言推断、 情感 分析和文档排序,NLP系统应用,问答系统对话系统智能客服,用户消费习惯理解热点话题分析舆情监控,自然语言处理,文本分类使用手册,文本分类API文档, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取智能创作,智能写作,搭配短文,种草标题,卖点标题,社交电商营销文案,自然语言处理能力,基础文本分析,分词、词性分析技术,词向量表示,依存句法分析,DNN语言模型,语义解析技术,意图成分识别, 情感 分析,对话情绪识别,文本相似度检测,文本解析和抽取技术,智能信息抽取,阅读理解,智能标签,NLG,自动摘要,自动写文章,语言处理基础技术,文本审核, 情感 分析,机器翻译,智能聊天,自然语言,基于标题的视频标签,台词看点识别,意图识别,词法分析,相关词,舆情分析,流量预测,标签技术,自然语言处理,语义对话,自然语言处理,车型信息提取,关键词提取,语义理解,语义相似度,意图解析,中文词向量,表示依存,句法分析,上下文理解,词法分析,意图分析,情绪计算,视觉 情感 ,语音 情感 , 情感 分析,沉浸式阅读器,语言理解,文本分析,自然语言处理,在线语音识别,自然语言理解火速上线中, 情感 判别,语义角色标注,依存句法分析,词性标注,实体识别,中文分词,分词,
6、知识图谱
知识图谱,药学知识图谱,智能分诊,腾讯知识图谱,无,药学知识图谱,智能分诊,知识理解,知识图谱Schema,图数据库BGraph,知识图谱,语言与知识,语言处理基础技术,语言处理应用技术,知识理解,文本审核,智能对话定制平台,智能文档分析平台,智能创作平台,知识图谱,实体链接,意图图谱,识别实体,逻辑推理,知识挖掘,知识卡片
7、对话问答机器人
智能问答机器人,智能语音助手,智能对话质检,智能话务机器人,无,电话机器人,NeuHub助力京东智能客服升级,腾讯云小微,智能硬件AI语音助手,对话机器人,无,问答系统对话系统智能客服,Replika对话技术,客服机器人,智能问答,智能场景,个性化回复,多轮交互,情绪识别,智能客服,金融虚拟客服,电话质检,AI语音交互机器人,中移云客服·智能AI外呼,人机对话精准语义分析
8、翻译
协同翻译工具平台,电商内容多语言工具,文档翻译,专业版翻译引擎,通用版翻译引擎,无,机器翻译,无,机器翻译,音视频字幕平台,机器翻译,机器翻译niutrans,文本翻译,语音翻译,拍照翻译,机器翻译,机器翻译,文本翻译,语音翻译,通用翻译,自然语言翻译服务,文本翻译,图片翻译,语音翻译,实时语音翻译,文档翻译(开发版,机器翻译,文本翻译,语音翻译,拍照翻译,机器翻译实时长语音转写,录音文件长语音转写,翻译工具,机器翻译火速上线中
9、声音
便携智能语音一体机,语音合成声音定制,语音合成,一句话识别,实时语音识别录音文件识别,客服电话,语音录入,语音指令,语音对话,语音识别,科学研究,安防监控,声音分类,语音合成,语音识别,实时语音转写,定制语音合成,定制语音识别,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,语音识别,语音合成,声纹识别,语音识别,语音听写,语音转写,实时语音转写,语音唤醒,离线命令词识别,离线语音听写,语音合成,在线语音合成,离线语音合成,语音分析,语音评测,性别年龄识别,声纹识别,歌曲识别,A.I.客服平台能力中间件,语音识别,语音交互技术,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,远场语音识别,语音识别,一句话识别,实时语音识别,录音文件识别,语音合成,实时语音识别,长语音识别,语音识别,语音合成,波束形成,声源定位,去混响,降噪,回声消除,分布式拾音,语音识别,语音唤醒,语音合成,声纹识别,智能语音服务,语音合成,短语音识别,实时语音识别,语音理解与交互,离线唤醒词识别,语音识别,一句话识别,实时语音识别,录音文件识别,电话语音识别,语音唤醒,离线语音识别,离线命令词识别,远场语音识别,语音合成,通用语音合成,个性化语音合成,语音技术,短语音识别,实时语音识别,音频文件转写,在线语音合成,离线语音合成,语音自训练平台,语音交互,语音合成,语音识别,一句话识别,实时短语音识别,语音合成,语音唤醒,本地语音合成,语音翻译,语音转文本,短语音听写,长语音转写,实时语音转写,语音内容审核,会议超极本,语音交互技术,语音识别,语义理解,语音合成,音频转写,音视频类产品,语音通知/验证码,订单小号,拨打验证,点击拨号,数据语音,统一认证,语音会议,企业视频彩铃,语音识别,语音文件转录,实时语音识别,一句话语音识别,语音合成,通用语音合成,个性化语音合成,语音评测,通用语音评测,中英文造句评测,在线语音识别,语音识别,语音唤醒,语音合成,语音合成,语音识别,语音听写,语音转写,短语音转写(同步),语音识别,语音 情感 识别
十、数据挖掘AI硬件
算法类型:包括二分类、多分类和回归,精准营销,表格数据预测,销量预测,交通流量预测,时序预测,大数据,无,机器学习使用手册,机器学习API文档,大数据处理,大数据传输,数据工厂,大数据分析,数据仓库,数据采集与标注,数据采集服务,数据标注服务,AI开发平台,全功能AI开发平台BML,零门槛AI开发平台EasyDL,AI硬件与平台,GPU云服务器,机器人平台,度目视频分析盒子,度目AI镜头模组,度目人脸应用套件,度目人脸抓拍机,人脸识别摄像机,昆仑AI加速卡,智能预测,购车指数,数据科学虚拟机,平台效率,云与AI,抗DDoS,天盾,网站漏洞扫描,网页防篡改,入侵检测防护,弹性云服务器,对象存储服务,云专线(CDA,AI计算机平台—360net深度学习基础模型,AI算法训练适配主流AI框架
十一、其他
内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测,商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,强化学习,智能地图引擎,内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,个性化与推荐系统,推荐系统,舆情分析,舆情标签,智慧教育,智能语音评测,拍照搜题,题目识别切分,整页拍搜批改,作文批改,学业大数据平台,文档校审系统,会议同传系统,文档翻译系统,视频翻译系统,教育学习,口语评测,朗读听书,增强现实,3D肢体关键点SDK,美颜滤镜SDK,短视频SDK,基础服务,私有云部署,多模态交互,多模态 情感 分析,多模态意图解析,多模态融合,多模态语义,内容审查器,Microsoft基因组学,医学人工智能开放平台,数据查验接口,身份验证(公安简项),银行卡验证,发票查验,设备接入服务Web/H5直播消息设备托管异常巡检电话提醒,音视频,视频监控服务云广播服务云存储云录制,司乘体验,智能地图引擎,消息类产品,视频短信,短信通知/验证码,企业挂机彩信,来去电身份提示,企业固话彩印,模板闪信,异网短信,内容生产,试卷拆录解决方案,教学管理,教学质量评估解决方案,教学异常行为监测,授课质量分析解决方案,路况识别,人车检测,视觉SLAM,高精地图,免费SDK,智能诊后随访管理,用药管家,智能预问诊,智能导诊,智能自诊,智能问药,智能问答,裁判文书近义词计算,法条推荐,案由预测,
❸ 分类算法在人工智能中的应用有哪些
分类属于人工智能的一个小功能
分类在现实生活中的应用很多,比如垃圾邮件分类,比如判断病人的病症
比如猜测明天是否下雨
做任何选择,都可以从历史数据之中学习到这种,解决问题的模型
❹ 人工智能的分类算法是什么
人工智能的分类是两大类中之一,另一个是预测,分类就是使用模型学习分类模式
❺ 回归算法在人工智能中的应用表现是什么
您好,你的问题,我之前好像也遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!展开全部
随着科学技术的发展,人们的生活也发生了很大的变化。近两年来,人工智能这一个词越来越被大家熟知。然而什么叫做人工智能,查找相关的知识可以得知,人工智能就是运用我们学习的一些知识来解决生活中的一些问题。到目前为止,人工智能已经广泛的被应用到我们的日常生活中,例如人工智能已经应用到了交通、医学以及家居等方面。
一、交通方面
随着人工智能技术的发展,人工智能也深入地应用到了我们日常交通。然而,在现在我们的生活中的日常交通出现的一种叫做智能交通系统,然而所谓的智能交通系统就是一种新管理模式。而这种新管理模式比我们以前的交通运输管理模式要更先进一些。从科学的角度上看,所谓的智能交通系统就是人类现在利用一些计算机的技术,通过对人们日常生活出行方式进行一些监测之后,再进行计算,最终计算出最佳的一个出行方案,从而保证人类出行安全和畅通。
二、医学方面
三、家居方面非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
❻ 人工智能是学习什么
1、学习并掌握一些数学知识
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础。
线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础。
概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路。
以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。
2、掌握经典机器学习理论和算法
如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:
1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);
2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);
3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);
4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);
5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);
6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;
7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);
8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;
9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);
10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);
11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;
12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。
3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。
4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。
5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。
6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的钻研下去,这样才能成为人工智能领域的大牛,有所成就。
根据网络给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
网络关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。
❼ 人工智能一些术语总结
随着智能时代慢慢的到来,有一些基本概念都不知道真的是要落伍了,作为正在积极学习向上的青年,我想总结一份笔记,此份笔记会记录众多AI领域的术语和概念,当然,学一部分记录一部分,并且可能会夹杂着自己的一些理解,由于能力有限,有问题希望大家多多赐教。当然,由于内容太多,仅仅只是记录了中英名对照,有的加上了简单的解释,没加的后续大家有需求,我会慢慢完善~~。目录暂定以首字母的字典序排序。可以当作目录方便以后查阅~~建议收藏加点赞哈哈哈
------------------------------------------------这里是分割线--------------------------------------------------
A
准确率(accuracy)
分类模型预测准确的比例。
二分类问题中,准确率定义为:accuracy = (true positives +true negatives)/all samples
多分类问题中,准确率定义为:accuracy = correctpredictions/all samples
激活函数(activation function)
一种函数,将前一层所有神经元激活值的加权和 输入到一个非线性函数中,然后作为下一层神经元的输入,例如 ReLU 或 Sigmoid
AdaGrad
一种复杂的梯度下降算法,重新调节每个参数的梯度,高效地给每个参数一个单独的学习率。
AUC(曲线下面积)
一种考虑到所有可能的分类阈值的评估标准。ROC 曲线下面积代表分类器随机预测真正类(Ture Positives)要比假正类(False Positives)概率大的确信度。
Adversarial example(对抗样本)
Adversarial Networks(对抗网络)
Artificial General Intelligence/AGI(通用人工智能)
Attention mechanism(注意力机制)
Autoencoder(自编码器)
Automatic summarization(自动摘要)
Average gradient(平均梯度)
Average-Pooling(平均池化)
B
反向传播(Backpropagation/BP)
神经网络中完成梯度下降的重要算法。首先,在前向传播的过程中计算每个节点的输出值。然后,在反向传播的过程中计算与每个参数对应的误差的偏导数。
基线(Baseline)
被用为对比模型表现参考的简单模型。
批量(Batch)
模型训练中一个迭代(指一次梯度更新)使用的样本集。
批量大小(Batch size)
一个批量中样本的数量。例如,SGD 的批量大小为 1,而 mini-batch 的批量大小通常在 10-1000 之间。
偏置(Bias)
与原点的截距或偏移量。
二元分类器(Binary classification)
一类分类任务,输出两个互斥类别中的一个。比如垃圾邮件检测。
词袋(Bag of words/Bow)
基学习器(Base learner)
基学习算法(Base learning algorithm)
贝叶斯网络(Bayesian network)
基准(Bechmark)
信念网络(Belief network)
二项分布(Binomial distribution)
玻尔兹曼机(Boltzmann machine)
自助采样法/可重复采样/有放回采样(Bootstrap sampling)
广播(Broadcasting)
C
类别(Class)
所有同类属性的目标值作为一个标签。
分类模型(classification)
机器学习模型的一种,将数据分离为两个或多个离散类别。
收敛(convergence)
训练过程达到的某种状态,其中训练损失和验证损失在经过了确定的迭代次数后,在每一次迭代中,改变很小或完全不变。
凸函数(concex function)
一种形状大致呈字母 U 形或碗形的函数。然而,在退化情形中,凸函数的形状就像一条线。
成本(cost)
loss 的同义词。深度学习模型一般都会定义自己的loss函数。
交叉熵(cross-entropy)
多类别分类问题中对 Log 损失函数的推广。交叉熵量化两个概率分布之间的区别。
条件熵(Conditional entropy)
条件随机场(Conditional random field/CRF)
置信度(Confidence)
共轭方向(Conjugate directions)
共轭分布(Conjugate distribution)
共轭梯度(Conjugate gradient)
卷积神经网络(Convolutional neural network/CNN)
余弦相似度(Cosine similarity)
成本函数(Cost Function)
曲线拟合(Curve-fitting)
D
数据集(data set)
样本的集合
深度模型(deep model)
一种包含多个隐藏层的神经网络。深度模型依赖于其可训练的非线性性质。和宽度模型对照(widemodel)。
dropout 正则化(dropoutregularization)
训练神经网络时一种有用的正则化方法。dropout 正则化的过程是在单次梯度计算中删去一层网络中随机选取的固定数量的单元。删去的单元越多,正则化越强。
数据挖掘(Data mining)
决策树/判定树(Decisiontree)
深度神经网络(Deep neural network/DNN)
狄利克雷分布(Dirichlet distribution)
判别模型(Discriminative model)
下采样(Down sampling)
动态规划(Dynamic programming)
E
早期停止法(early stopping)
一种正则化方法,在训练损失完成下降之前停止模型训练过程。当验证数据集(validationdata set)的损失开始上升的时候,即泛化表现变差的时候,就该使用早期停止法了。
嵌入(embeddings)
一类表示为连续值特征的明确的特征。嵌入通常指将高维向量转换到低维空间中。
经验风险最小化(empirical risk minimization,ERM)
选择能使得训练数据的损失函数最小化的模型的过程。和结构风险最小化(structualrisk minimization)对照。
集成(ensemble)
多个模型预测的综合考虑。可以通过以下一种或几种方法创建一个集成方法:
设置不同的初始化;
设置不同的超参量;
设置不同的总体结构。
深度和广度模型是一种集成。
样本(example)
一个数据集的一行内容。一个样本包含了一个或多个特征,也可能是一个标签。参见标注样本(labeledexample)和无标注样本(unlabeled example)。
F
假负类(false negative,FN)
被模型错误的预测为负类的样本。例如,模型推断一封邮件为非垃圾邮件(负类),但实际上这封邮件是垃圾邮件。
假正类(false positive,FP)
被模型错误的预测为正类的样本。例如,模型推断一封邮件为垃圾邮件(正类),但实际上这封邮件是非垃圾邮件。
假正类率(false positive rate,FP rate)
ROC 曲线(ROC curve)中的 x 轴。FP 率的定义是:假正率=假正类数/(假正类数+真负类数)
特征工程(feature engineering)
在训练模型的时候,挖掘对模型效果有利的特征。
前馈神经网络(Feedforward Neural Networks/FNN )
G
泛化(generalization)
指模型利用新的没见过的数据而不是用于训练的数据作出正确的预测的能力。
广义线性模型(generalized linear model)
最小二乘回归模型的推广/泛化,基于高斯噪声,相对于其它类型的模型(基于其它类型的噪声,比如泊松噪声,或类别噪声)。广义线性模型的例子包括:
logistic 回归
多分类回归
最小二乘回归
梯度(gradient)
所有变量的偏导数的向量。在机器学习中,梯度是模型函数的偏导数向量。梯度指向最陡峭的上升路线。
梯度截断(gradient clipping)
在应用梯度之前先修饰数值,梯度截断有助于确保数值稳定性,防止梯度爆炸出现。
梯度下降(gradient descent)
通过计算模型的相关参量和损失函数的梯度最小化损失函数,值取决于训练数据。梯度下降迭代地调整参量,逐渐靠近权重和偏置的最佳组合,从而最小化损失函数。
图(graph)
在 TensorFlow 中的一种计算过程展示。图中的节点表示操作。节点的连线是有指向性的,表示传递一个操作(一个张量)的结果(作为一个操作数)给另一个操作。使用 TensorBoard 能可视化计算图。
高斯核函数(Gaussian kernel function)
高斯混合模型(Gaussian Mixture Model)
高斯过程(Gaussian Process)
泛化误差(Generalization error)
生成模型(Generative Model)
遗传算法(Genetic Algorithm/GA)
吉布斯采样(Gibbs sampling)
基尼指数(Gini index)
梯度下降(Gradient Descent)
H
启发式(heuristic)
一个问题的实际的和非最优的解,但能从学习经验中获得足够多的进步。
隐藏层(hidden layer)
神经网络中位于输入层(即特征)和输出层(即预测)之间的合成层。一个神经网络包含一个或多个隐藏层。
超参数(hyperparameter)
连续训练模型的过程中可以拧动的“旋钮”。例如,相对于模型自动更新的参数,学习率(learningrate)是一个超参数。和参量对照。
硬间隔(Hard margin)
隐马尔可夫模型(Hidden Markov Model/HMM)
层次聚类(Hierarchical clustering)
假设检验(Hypothesis test)
I
独立同分布(independently and identicallydistributed,i.i.d)
从不会改变的分布中获取的数据,且获取的每个值不依赖于之前获取的值。i.i.d. 是机器学习的理想情况——一种有用但在现实世界中几乎找不到的数学构建。
推断(inference)
在机器学习中,通常指将训练模型应用到无标注样本来进行预测的过程。在统计学中,推断指在观察到的数据的基础上拟合分布参数的过程。
输入层(input layer)
神经网络的第一层(接收输入数据)。
评分者间一致性(inter-rater agreement)
用来衡量一项任务中人类评分者意见一致的指标。如果意见不一致,则任务说明可能需要改进。有时也叫标注者间信度(inter-annotator agreement)或评分者间信度(inter-raterreliability)。
增量学习(Incremental learning)
独立成分分析(Independent Component Analysis/ICA)
独立子空间分析(Independent subspace analysis)
信息熵(Information entropy)
信息增益(Information gain)
J
JS 散度(Jensen-ShannonDivergence/JSD)
K
Kernel 支持向量机(KernelSupport Vector Machines/KSVM)
一种分类算法,旨在通过将输入数据向量映射到更高维度的空间使正类和负类之间的边际最大化。例如,考虑一个输入数据集包含一百个特征的分类问题。为了使正类和负类之间的间隔最大化,KSVM 从内部将特征映射到百万维度的空间。KSVM 使用的损失函数叫作 hinge 损失。
核方法(Kernel method)
核技巧(Kernel trick)
k 折交叉验证/k 倍交叉验证(K-fold cross validation)
K - 均值聚类(K-MeansClustering)
K近邻算法(K-Nearest NeighboursAlgorithm/KNN)
知识图谱(Knowledge graph)
知识库(Knowledge base)
知识表征(Knowledge Representation)
L
L1 损失函数(L1 loss)
损失函数基于模型对标签的预测值和真实值的差的绝对值而定义。L1 损失函数比起 L2 损失函数对异常值的敏感度更小。
L1 正则化(L1regularization)
一种正则化,按照权重绝对值总和的比例进行惩罚。在依赖稀疏特征的模型中,L1 正则化帮助促使(几乎)不相关的特征的权重趋近于 0,从而从模型中移除这些特征。
L2 损失(L2 loss)
参见平方损失。
L2 正则化(L2regularization)
一种正则化,按照权重平方的总和的比例进行惩罚。L2 正则化帮助促使异常值权重更接近 0 而不趋近于 0。(可与 L1 正则化对照阅读。)L2 正则化通常改善线性模型的泛化效果。
标签(label)
在监督式学习中,样本的“答案”或“结果”。标注数据集中的每个样本包含一或多个特征和一个标签。在垃圾邮件检测数据集中,特征可能包括主题、发出者何邮件本身,而标签可能是“垃圾邮件”或“非垃圾邮件”。
标注样本(labeled example)
包含特征和标签的样本。在监督式训练中,模型从标注样本中进行学习。
学习率(learning rate)
通过梯度下降训练模型时使用的一个标量。每次迭代中,梯度下降算法使学习率乘以梯度,乘积叫作 gradient step。学习率是一个重要的超参数。
最小二乘回归(least squares regression)
通过 L2 损失最小化进行训练的线性回归模型。
线性回归(linear regression)
对输入特征的线性连接输出连续值的一种回归模型。
logistic 回归(logisticregression)
将 sigmoid 函数应用于线性预测,在分类问题中为每个可能的离散标签值生成概率的模型。尽管 logistic 回归常用于二元分类问题,但它也用于多类别分类问题(这种情况下,logistic回归叫作“多类别 logistic 回归”或“多项式 回归”。
对数损失函数(Log Loss)
二元 logistic 回归模型中使用的损失函数。
损失(Loss)
度量模型预测与标签距离的指标,它是度量一个模型有多糟糕的指标。为了确定损失值,模型必须定义损失函数。例如,线性回归模型通常使用均方差作为损失函数,而 logistic 回归模型使用对数损失函数。
隐狄利克雷分布(Latent Dirichlet Allocation/LDA)
潜在语义分析(Latent semantic analysis)
线性判别(Linear Discriminant Analysis/LDA)
长短期记忆(Long-Short Term Memory/LSTM)
M
机器学习(machine learning)
利用输入数据构建(训练)预测模型的项目或系统。该系统使用学习的模型对与训练数据相同分布的新数据进行有用的预测。机器学习还指与这些项目或系统相关的研究领域。
均方误差(Mean Squared Error/MSE)
每个样本的平均平方损失。MSE 可以通过平方损失除以样本数量来计算。
小批量(mini-batch)
在训练或推断的一个迭代中运行的整批样本的一个小的随机选择的子集。小批量的大小通常在10 到 1000 之间。在小批量数据上计算损失比在全部训练数据上计算损失要高效的多。
机器翻译(Machine translation/MT)
马尔可夫链蒙特卡罗方法(Markov Chain Monte Carlo/MCMC)
马尔可夫随机场(Markov Random Field)
多文档摘要(Multi-document summarization)
多层感知器(Multilayer Perceptron/MLP)
多层前馈神经网络(Multi-layer feedforward neuralnetworks)
N
NaN trap
训练过程中,如果模型中的一个数字变成了 NaN,则模型中的很多或所有其他数字最终都变成 NaN。NaN 是“Not aNumber”的缩写。
神经网络(neural network)
该模型从大脑中获取灵感,由多个层组成(其中至少有一个是隐藏层),每个层包含简单的连接单元或神经元,其后是非线性。
神经元(neuron)
神经网络中的节点,通常输入多个值,生成一个输出值。神经元通过将激活函数(非线性转换)应用到输入值的加权和来计算输出值。
归一化(normalization)
将值的实际区间转化为标准区间的过程,标准区间通常是-1 到+1 或 0 到 1。例如,假设某个特征的自然区间是 800 到 6000。通过减法和分割,你可以把那些值标准化到区间-1 到+1。参见缩放。
Numpy
Python 中提供高效数组运算的开源数学库。pandas 基于 numpy 构建。
Naive bayes(朴素贝叶斯)
Naive Bayes Classifier(朴素贝叶斯分类器)
Named entity recognition(命名实体识别)
Natural language generation/NLG(自然语言生成)
Natural language processing(自然语言处理)
Norm(范数)
O
目标(objective)
算法尝试优化的目标函数。
one-hot 编码(独热编码)(one-hotencoding)
一个稀疏向量,其中:一个元素设置为 1,所有其他的元素设置为 0。。
一对多(one-vs.-all)
给出一个有 N 个可能解决方案的分类问题,一对多解决方案包括 N 个独立的二元分类器——每个可能的结果都有一个二元分类器。例如,一个模型将样本分为动物、蔬菜或矿物,则一对多的解决方案将提供以下三种独立的二元分类器:
动物和非动物
蔬菜和非蔬菜
矿物和非矿物
过拟合(overfitting)
创建的模型与训练数据非常匹配,以至于模型无法对新数据进行正确的预测
Oversampling(过采样)
P
pandas
一种基于列的数据分析 API。很多机器学习框架,包括 TensorFlow,支持 pandas 数据结构作为输入。参见 pandas 文档。
参数(parameter)
机器学习系统自行训练的模型的变量。例如,权重是参数,它的值是机器学习系统通过连续的训练迭代逐渐学习到的。注意与超参数的区别。
性能(performance)
在软件工程中的传统含义:软件运行速度有多快/高效?
在机器学习中的含义:模型的准确率如何?即,模型的预测结果有多好?
困惑度(perplexity)
对模型完成任务的程度的一种度量指标。例如,假设你的任务是阅读用户在智能手机上输入的单词的头几个字母,并提供可能的完整单词列表。该任务的困惑度(perplexity,P)是为了列出包含用户实际想输入单词的列表你需要进行的猜测数量。
流程(pipeline)
机器学习算法的基础架构。管道包括收集数据、将数据放入训练数据文件中、训练一或多个模型,以及最终输出模型。
Principal component analysis/PCA(主成分分析)
Precision(查准率/准确率)
Prior knowledge(先验知识)
Q
Quasi Newton method(拟牛顿法)
R
召回率(recall)
回归模型(regression model)
一种输出持续值(通常是浮点数)的模型。而分类模型输出的是离散值。
正则化(regularization)
对模型复杂度的惩罚。正则化帮助防止过拟合。正则化包括不同种类:
L1 正则化
L2 正则化
dropout 正则化
early stopping(这不是正式的正则化方法,但可以高效限制过拟合)
正则化率(regularization rate)
一种标量级,用 lambda 来表示,指正则函数的相对重要性。从下面这个简化的损失公式可以看出正则化率的作用:
minimize(loss function + λ(regularization function))
提高正则化率能够降低过拟合,但可能会使模型准确率降低。
表征(represention)
将数据映射到有用特征的过程。
受试者工作特征曲线(receiver operatingcharacteristic/ROC Curve)
反映在不同的分类阈值上,真正类率和假正类率的比值的曲线。参见 AUC。
Recurrent Neural Network(循环神经网络)
Recursive neural network(递归神经网络)
Reinforcement learning/RL(强化学习)
Re-sampling(重采样法)
Representation learning(表征学习)
Random Forest Algorithm(随机森林算法)
S
缩放(scaling)
特征工程中常用的操作,用于控制特征值区间,使之与数据集中其他特征的区间匹配。例如,假设你想使数据集中所有的浮点特征的区间为 0 到 1。给定一个特征区间是 0 到 500,那么你可以通过将每个值除以 500,缩放特征值区间。还可参见正则化。
scikit-learn
一种流行的开源机器学习平台。网址:www.scikit-learn.org。
序列模型(sequence model)
输入具有序列依赖性的模型。例如,根据之前观看过的视频序列对下一个视频进行预测。
Sigmoid 函数(sigmoid function)
softmax
为多类别分类模型中每个可能的类提供概率的函数。概率加起来的总和是 1.0。例如,softmax 可能检测到某个图像是一只狗的概率为 0.9,是一只猫的概率为 0.08,是一匹马的概率为 0.02。(也叫作 full softmax)。
结构风险最小化(structural risk minimization/SRM)
这种算法平衡两个目标:
构建预测性最强的模型(如最低损失)。
使模型尽量保持简单(如强正则化)。
比如,在训练集上的损失最小化 + 正则化的模型函数就是结构风险最小化算法。更多信息,参见 http://www.svms.org/srm/。可与经验风险最小化对照阅读。
监督式机器学习(supervised machine learning)
利用输入数据及其对应标签来训练模型。监督式机器学习类似学生通过研究问题和对应答案进行学习。在掌握问题和答案之间的映射之后,学生就可以提供同样主题的新问题的答案了。可与非监督机器学习对照阅读。
Similarity measure(相似度度量)
Singular Value Decomposition(奇异值分解)
Soft margin(软间隔)
Soft margin maximization(软间隔最大化)
Support Vector Machine/SVM(支持向量机)
T
张量(tensor)
TensorFlow 项目的主要数据结构。张量是 N 维数据结构(N 的值很大),经常是标量、向量或矩阵。张量可以包括整数、浮点或字符串值。
Transfer learning(迁移学习)
U
无标签样本(unlabeled example)
包含特征但没有标签的样本。无标签样本是推断的输入。在半监督学习和无监督学习的训练过程中,通常使用无标签样本。
无监督机器学习(unsupervised machine learning)
训练一个模型寻找数据集(通常是无标签数据集)中的模式。无监督机器学习最常用于将数据分成几组类似的样本。无监督机器学习的另一个例子是主成分分析(principal componentanalysis,PCA)
W
Word embedding(词嵌入)
Word sense disambiguation(词义消歧)
❽ 人工智能算法有哪些
人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。
❾ 人工智能算法简介
人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?
一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。
常见的监督学习算法包含以下几类:
(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。
常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。
(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。
常见的半监督学习类算法包含:生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。
常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。
常见的深度学习类算法包含:深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。
二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。
1.二分类(Two-class Classification)
(1)二分类支持向量机(Two-class SVM):适用于数据特征较多、线性模型的场景。
(2)二分类平均感知器(Two-class Average Perceptron):适用于训练时间短、线性模型的场景。
(3)二分类逻辑回归(Two-class Logistic Regression):适用于训练时间短、线性模型的场景。
(4)二分类贝叶斯点机(Two-class Bayes Point Machine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-class Decision Forest):适用于训练时间短、精准的场景。
(6)二分类提升决策树(Two-class Boosted Decision Tree):适用于训练时间短、精准度高、内存占用量大的场景
(7)二分类决策丛林(Two-class Decision Jungle):适用于训练时间短、精确度高、内存占用量小的场景。
(8)二分类局部深度支持向量机(Two-class Locally Deep SVM):适用于数据特征较多的场景。
(9)二分类神经网络(Two-class Neural Network):适用于精准度高、训练时间较长的场景。
解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。
常用的算法:
(1)多分类逻辑回归(Multiclass Logistic Regression):适用训练时间短、线性模型的场景。
(2)多分类神经网络(Multiclass Neural Network):适用于精准度高、训练时间较长的场景。
(3)多分类决策森林(Multiclass Decision Forest):适用于精准度高,训练时间短的场景。
(4)多分类决策丛林(Multiclass Decision Jungle):适用于精准度高,内存占用较小的场景。
(5)“一对多”多分类(One-vs-all Multiclass):取决于二分类器效果。
回归
回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:
(1)排序回归(Ordinal Regression):适用于对数据进行分类排序的场景。
(2)泊松回归(Poission Regression):适用于预测事件次数的场景。
(3)快速森林分位数回归(Fast Forest Quantile Regression):适用于预测分布的场景。
(4)线性回归(Linear Regression):适用于训练时间短、线性模型的场景。
(5)贝叶斯线性回归(Bayesian Linear Regression):适用于线性模型,训练数据量较少的场景。
(6)神经网络回归(Neural Network Regression):适用于精准度高、训练时间较长的场景。
(7)决策森林回归(Decision Forest Regression):适用于精准度高、训练时间短的场景。
(8)提升决策树回归(Boosted Decision Tree Regression):适用于精确度高、训练时间短、内存占用较大的场景。
聚类
聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。
(1)层次聚类(Hierarchical Clustering):适用于训练时间短、大数据量的场景。
(2)K-means算法:适用于精准度高、训练时间短的场景。
(3)模糊聚类FCM算法(Fuzzy C-means,FCM):适用于精确度高、训练时间短的场景。
(4)SOM神经网络(Self-organizing Feature Map,SOM):适用于运行时间较长的场景。
异常检测
异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。
异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:
(1)一分类支持向量机(One-class SVM):适用于数据特征较多的场景。
(2)基于PCA的异常检测(PCA-based Anomaly Detection):适用于训练时间短的场景。
常见的迁移学习类算法包含:归纳式迁移学习(Inctive Transfer Learning) 、直推式迁移学习(Transctive Transfer Learning)、无监督式迁移学习(Unsupervised Transfer Learning)、传递式迁移学习(Transitive Transfer Learning)等。
算法的适用场景:
需要考虑的因素有:
(1)数据量的大小、数据质量和数据本身的特点
(2)机器学习要解决的具体业务场景中问题的本质是什么?
(3)可以接受的计算时间是什么?
(4)算法精度要求有多高?
————————————————
原文链接: https://blog.csdn.net/nfzhlk/article/details/82725769