⑴ 二分法查找的算法
假如有一组数为3,12,24,36,55,68,75,88要查给定的值24.可设三个变量front,mid,end分别指向数据的上界,中间和下界,mid=(front+end)/2.
1.开始令front=0(指向3),end=7(指向88),则mid=3(指向36)。因为mid>x,故应在前半段中查找。
2.令新的end=mid-1=2,而front=0不变,则新的mid=1。此时x>mid,故确定应在后半段中查找。
3.令新的front=mid+1=2,而end=2不变,则新的mid=2,此时a[mid]=x,查找成功。
如果要查找的数不是数列中的数,例如x=25,当第三次判断时,x>a[mid],按以上规律,令front=mid+1,即front=3,出现front>end的情况,表示查找不成功。
例:在有序的有N个元素的数组中查找用户输进去的数据x。
算法如下:
1.确定查找范围front=0,end=N-1,计算中项mid=(front+end)/2。
2.若a[mid]=x或front>=end,则结束查找;否则,向下继续。
3.若a[mid]<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给front,并重新计算mid,转去执行步骤2;若a[mid]>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给end,并重新计算mid,转去执行步骤2。
[一维数组,折半查找]
⑵ 二分查找算法
二分查找算法,该算法要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。如果一个序列是无序的或者是链表,那么该序列就不能使用二分查找。
二分查找算法原理:若待查序列为空,则返回-1,并退出算法;若待查序列不为空,则将它的中间元素与目标数值进行比较,判断是否相等;若相等,则返回中间元素索引,并退出算法;此时已查找成功。若不相等,则比较中间元素与目标数值的大小。
二分查找的一个技巧是:不要出现else,而是把所有情况用else,if写清楚,这样可以清楚地展现所有细节。本文都会使用else,if,旨在讲清楚,读者理解后可自行简化。
⑶ 二分搜索算法是利用什么实现的算法
二分搜索算法是利用排除剩余元素中一半的元素实现的算法。
在计算机科学中,二分搜索(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是一种在有序数组中查找某一特定元素的搜索算法。
二分搜索算法原理:
1、如果待查序列为空,那么就返回-1,并退出算法;这表示查找不到目标元素。如果待查序列不为空,则将它的中间元素与要查找的目标元素进行匹配,看它们是否相等。如果相等,则返回该中间元素的索引,并退出算法;此时就查找成功了。如果不相等,就再比较这两个元素的大小。
2、如果该中间元素大于目标元素,那么就将当前序列的前半部分作为新的待查序列;这是因为后半部分的所有元素都大于目标元素,它们全都被排除了。
3、如果该中间元素小于目标元素,那么就将当前序列的后半部分作为新的待查序列;这是因为前半部分的所有元素都小于目标元素,它们全都被排除了。
⑷ 二分法的算法步骤是什么
在有序的有N个元素的数组中查找用户输进去的数据x。
算法如下:
1、确定查找范围front=0,end=N-1,计算中项mid=(front+end)/2。
2、若a[mid]=x或front>=end,则结束查找;否则,向下继续。
3.、若a[mid]<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给front,并重新计算mid,转去执行步骤2;若a[mid]>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给end,并重新计算mid,转去执行步骤2。
(4)设计二分法检索算法的主要技术是扩展阅读
基本思想:假设数据是按升序排序的,对于给定值key,从序列的中间位置k开始比较,
如果当前位置arr[k]值等于key,则查找成功;
若key小于当前位置值arr[k],则在数列的前半段中查找,arr[low,mid-1];
若key大于当前位置值arr[k],则在数列的后半段中继续查找arr[mid+1,high],
直到找到为止,时间复杂度:O(log(n))。