① 分治算法——汉诺塔问题
一、分治算法概念
“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换) 。
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、分治法的设计思想
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
三、分治策略
对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
四、分治法实现步骤
①分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;②解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;③合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下: Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) 递归解决Pi 6. T ← MERGE(y1,y2,…,yk) 合并子问题 7. return(T)
五、可使用分治法求解的一些经典问题 (1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
② 分治算法几个经典例子
分治法,字面意思是“分而治之”,就是把一个复杂的1问题分成两个或多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并,这个思想是很多高效算法的基础。
图二
大整数乘法
Strassen矩阵乘法
棋盘覆盖
合并排序
快速排序
线性时间选择
最接近点对问题
循环赛日程表
汉诺塔
③ Android 算法之排序算法(快速排序)
快速排序(Quick Sort)的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
④ 程序员开发用到的十大基本算法
算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。
算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1
算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:
算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。
算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。
算法步骤:
终止条件:n=1时,返回的即是i小元素。
算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。
算法步骤:
上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。
接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。
算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。
算法步骤:
算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。
该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。
算法步骤:
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止
算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。
关于动态规划最经典的问题当属背包问题。
算法步骤:
算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。
尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。
⑤ 快速排序特点
快速排序(Quicksort)是对冒泡排序的一种改进,由东尼·霍尔在1960年提出。 快速排序是指通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序。整个排序过程可以递归进行,以此达到整个数据变成有序序列。
分类
排序算法
数据结构
不定
最坏空间复杂度
根据实现的方式不同而不同
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
步骤为:
从数列中挑出一个元素,称为“基准”(pivot),
重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
在简单的伪代码中,此算法可以被表示为:
function quicksort(q)
{
var list less, pivotList, greater
if length(q) ≤ 1
return q
else
{
select a pivot value pivot from q
for each x in q except the pivot element
{
if x<pivot then add x to less
if x ≥ pivot then add x to greater
}
add pivot to pivotList
return concatenate(quicksort(less), pivotList, quicksort(greater))
}
}
原地(in-place)分区的版本
上面简单版本的缺点是,它需要的额外存储空间,也就跟归并排序一样不好。额外需要的存储器空间配置,在实际上的实现,也会极度影响速度和缓存的性能。有一个比较复杂使用原地(in-place)分区算法的版本,且在好的基准选择上,平均可以达到空间的使用复杂度。
function partition(a, left, right, pivotIndex)
{
pivotValue = a[pivotIndex]
swap(a[pivotIndex], a[right]) // 把pivot移到结尾
storeIndex = left
for i from left to right-1
{
if a[i]<= pivotValue
{
swap(a[storeIndex], a[i])
storeIndex = storeIndex + 1
}
}
swap(a[right], a[storeIndex]) // 把pivot移到它最后的地方
return storeIndex
}
这是原地分区算法,它分区了标示为"左边(left)"和"右边(right)"的序列部分,借由移动小于的所有元素到子序列的开头,留下所有大于或等于的元素接在他们后面。在这个过程它也为基准元素找寻最后摆放的位置,也就是它回传的值。它暂时地把基准元素移到子序列的结尾,而不会被前述方式影响到。由于算法只使用交换,因此最后的数列与原先的数列拥有一样的元素。要注意的是,一个元素在到达它的最后位置前,可能会被交换很多次。
一旦我们有了这个分区算法,要写快速排列本身就很容易:
procere quicksort(a, left, right)
if right>left
select a pivot value a[pivotIndex]
pivotNewIndex := partition(a, left, right, pivotIndex)
quicksort(a, left, pivotNewIndex-1)
quicksort(a, pivotNewIndex+1, right)
这个版本经常会被使用在命令式语言中,像是C语言。
快速排序
快速排序是二叉查找树(二叉搜索树)的一个空间最优化版本。不是循序地把数据项插入到一个明确的树中,而是由快速排序组织这些数据项到一个由递归调用所隐含的树中。这两个算法完全地产生相同的比较次数,但是顺序不同。对于排序算法的稳定性指标,原地分区版本的快速排序算法是不稳定的。其他变种是可以通过牺牲性能和空间来维护稳定性的。
⑥ 什么是分治算法
分治法就是将一个复杂的问题分成多个相对简单的独立问题进行求解,并且综合所有简单问题的解可以组成这个复杂问题的解。
例如快速排序算法就是一个分治法的例子。即将一个大的无序序列排序成有序序列,等于将两个无序的子序列排序成有序,且两个子序列之间满足一个序列的元素普遍大于另一个序列中的元素。
⑦ 快速排序法的平均时间复杂度和最坏时间复杂度分别是多少
快速排序的平均时间复杂度和最坏时间复杂度分别是O(nlgn)、O(n^2)。
当排序已经成为基本有序状态时,快速排序退化为O(n^2),一般情况下,排序为指数复杂度。
快速排序最差情况递归调用栈高度O(n),平均情况递归调用栈高度O(logn),而不管哪种情况栈的每一层处理时间都是O(n),所以,平均情况(最佳情况也是平均情况)的时间复杂度O(nlogn),最差情况的时间复杂度为O(n^2)。
(7)分治算法快速排序扩展阅读
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序,它采用了一种分治的策略,通常称其为分治法。快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
⑧ C++算法分治法实现快速排序改错。
你思路是错的
快排的每一部分 是将待排序的序列中随便挑一个 比他小的放到左边 大的放到右边 自己放在中间
然后递归解决左边那串序列和右边那串
怎么可能刚好左边那串和右边那串长度都是原来的一半呢?
⑨ 快速排序是原地排序么
快速排序是原地排序。
快速排序是一种原地排序,只需要一个很小的栈作为辅助空间,空间复杂度为O(logN),所以适合在数据集比较大且无序的时候使用。实现方法有经典快排和双指针快排。
快速排序也是一种分治的排序算法。它将一个数组分成两个子数组,将两部分独立地排序。
快速排序和归并排序是互补:
归并排序是将数组分成两个子数组分别排序,并将有序数组归并,这样数组就是有序的了;而快速排序将数组通过切分变成部分有序数组,然后拆成成两个子数组,当两个子数组都有序时整个数组也就有序了。
归并排序的递归调用发生在处理数组之前,快速排序的递归调用是发生在处理数组之后。
⑩ 快速排序算法原理与实现
快速排序的基本思想就是从一个数组中任意挑选一个元素(通常来说会选择最左边的元素)作为中轴元素,将剩下的元素以中轴元素作为比较的标准,将小于等于中轴元素的放到中轴元素的左边,将大于中轴元素的放到中轴元素的右边。
然后以当前中轴元素的位置为界,将左半部分子数组和右半部分子数组看成两个新的数组,重复上述操作,直到子数组的元素个数小于等于1(因为一个元素的数组必定是有序的)。
以下的代码中会常常使用交换数组中两个元素值的Swap方法,其代码如下
publicstaticvoidSwap(int[] A, inti, intj){
inttmp;
tmp = A[i];
A[i] = A[j];
A[j] = tmp;
(10)分治算法快速排序扩展阅读:
快速排序算法 的基本思想是:将所要进行排序的数分为左右两个部分,其中一部分的所有数据都比另外一 部分的数据小,然后将所分得的两部分数据进行同样的划分,重复执行以上的划分操作,直 到所有要进行排序的数据变为有序为止。
定义两个变量low和high,将low、high分别设置为要进行排序的序列的起始元素和最后一个元素的下标。第一次,low和high的取值分别为0和n-1,接下来的每次取值由划分得到的序列起始元素和最后一个元素的下标来决定。
定义一个变量key,接下来以key的取值为基准将数组A划分为左右两个部分,通 常,key值为要进行排序序列的第一个元素值。第一次的取值为A[0],以后毎次取值由要划 分序列的起始元素决定。
从high所指向的数组元素开始向左扫描,扫描的同时将下标为high的数组元素依次与划分基准值key进行比较操作,直到high不大于low或找到第一个小于基准值key的数组元素,然后将该值赋值给low所指向的数组元素,同时将low右移一个位置。
如果low依然小于high,那么由low所指向的数组元素开始向右扫描,扫描的同时将下标为low的数组元素值依次与划分的基准值key进行比较操作,直到low不小于high或找到第一个大于基准值key的数组元素,然后将该值赋给high所指向的数组元素,同时将high左移一个位置。
重复步骤(3) (4),直到low的植不小于high为止,这时成功划分后得到的左右两部分分别为A[low……pos-1]和A[pos+1……high],其中,pos下标所对应的数组元素的值就是进行划分的基准值key,所以在划分结束时还要将下标为pos的数组元素赋值 为 key。