导航:首页 > 源码编译 > 贪心算法

贪心算法

发布时间:2022-02-09 03:08:36

⑴ 贪心算法,这个贪心到底是什么意思

贪心指目光短浅,只看到当前这一步的最优决策,而不考虑以后的决策。这样的算法只在特定的问题下是正确的。

⑵ 哪些常见算法属于贪婪算法

显然KMP和FLOYD算法不是贪心算法,FLOYD算法是使用了类似于动态规划的思想,而KMP算法则是对串的前缀进行去处理得到所有可能出现匹配的位置从而减少不必要的位移。贪心算法可能还有很多,但是一般能用到的可能只有这些。在确定一个问题是否能用贪心来解决的时候应该线能够证明在这里使用贪心算法的正确性(详见算法导论)

⑶ 贪心算法问题

//身为大一菜鸟的我曾错了n次的题
//算法是从头开始扫过去,若当前扫到的数比下一个大,则删,删后回退到上一个未被删的数继续,直到删完指定数或扫到最后一个元素,若删不够指定的数,则此刻数组肯定是递增的,所以只要从后向前删至足够数量便行了

#include<iostream>
#include<string.h>
using namespace std;
char str[250];
int a[250];
int b[250];

int main(){
int i, len, k, l, r, c, t, f;
do{
f = 0;
cin >> str;
if (str[0] == '0')
break;
len = strlen(str);
cin >> k;
for (i = 0; i<250; i++){
a[i] = i + 1;
b[i] = i - 1;
}
c = 0;
l = 0;
for (r = 1; str[r] != '\0';){
if (c >= k)
break;
if (str[r] - str[l] >= 0){
l = a[l];
r = a[r];
}
else{
c++;
if (b[l] != -1){
a[b[l]] = r;
b[r] = b[l];
l = b[l];
}
else{
f = 1;
b[r] = -1;
a[0] = r;
l = a[l];
r = a[r];
}
}
}
t = r - 1;
for (; c<k; c++){
a[b[t]] = r;
t = b[t];
}
if (f == 0)
cout << str[0];
i = 0;
for (i = a[i]; i<len; i = a[i]){
cout << str[i];
}
cout << endl;
} while (1);
return 0;
}

⑷ 什么是贪婪算法

是贪心算法吧……
就是每次都取最优值。。。比如合并果子:
有n堆果子,每个果子都有一个重量,每次可以任意选择2堆果子将其合并成一堆,花费是这两堆果子的重量值之和,求最终合并成一堆的最小(最大)花费。
算法就是,每次取重量最小(最大)的两堆果子合并,直到还剩一堆。

⑸ 可用动态规划算法解决的问题可能不能用贪心算法

主要涉及到以下几个方面的内容:
①什么是活动选择问题---粗略提下,详细请参考《算法导论》
②活动选择问题的DP(Dynamic programming)求解--DP求解问题的思路
③活动选择问题的贪心算法求解
④为什么这个问题可以用贪心算法求解?
⑤动态规划与贪心算法的一些区别与联系
⑥活动选择问题的DP求解的JAVA语言实现以及时间复杂度分析
⑦活动选择问题的Greedy算法JAVA实现和时间复杂度分析
⑧一些有用的参考资料

⑹ 什么是贪心算法

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。

⑺ 贪心算法

平面点集三角剖分的贪心算法要求三角剖分后边的总长度尽可能小。算法的基本思想是将所有的两点间距离从小到大排序,依次序每次取一条三角剖分的边,直至达到要求的边数。以下是两种贪心算法的主要步骤。

3.2.2.1 贪心算法1

第一步:设置一个记录三角剖分中边的数组T。

第二步:计算点集S中所有点对之间的距离d(pi,pj),1≤i,j≤n,i≠j,并且对距离从小到大进行排序,设为d1,d2,…,dn(n-1)/2,相应的线段记为e1,e2,…,en(n-1)/2,将这些线段存储在数组E中。

第三步:从线段集E中取出长度最短的边e1存到T中作为三角剖分的第一条边,此时k=1。

第四步:依次从E中取出长度最短的边ek,与T中已有的边进行求交运算,如果不相交则存到T中,并从E中删除ek。这一步运行到S中没有边为止,即至k=n(n-1)/2。

第五步:输出T。

该算法中,第二步需要计算n(n-1)/2次距离,另外距离排序需要O(n2lgn)次比较。T中元素随第四步循环次数的增加而增加,因此向T中加入一条新边所需要的判定两条线段是否相交的次数也随之增加。如果第四步的前3n-6次循环后已经构成点集的三角剖分,那么第四步循环所需要的判定两条线段是否相交的次数为

1+2+…+3n-7+(3n-6)×(n(n-1)/2-(3n-6))=O(n3)

在常数时间内可以判定两条线段是否相交,因此该算法的时间复杂性为O(n3)。

3.2.2.2 贪心算法2

第一步:求点集的凸壳,设凸壳顶点为p1,p2,…,pm,凸壳的边为e1,e2,…,em。并将凸壳顶点按顺序连接成边的ei加入T(三角剖分的边集合),并且ei的权值被赋为1。凸壳内点的集合为S1={pm+1,pm+2,…,pn}。

第二步:从内部点S1中任取一点pi,求与pi距离最近的点pj,将线段 存入T。

第三步:求与pj距离最近的点(除点pi外),设为pk,并将线段 加入T,并将这些边的权值设为1,而wij、wjk和wki的值加1,即为2。边的权值为2则表示该边为两个三角形共有。

第五步:对权值为1的边(除e1,e2,…,em外)的两个端点分别求与其距离最近的点,并将其连线(得到新的三角形)加入T,新三角形边的权值加1。

第六步:对权值为1的边重复上一步,当一条边被使用一次其权值增加1,直到所有边的权值均为2为止(除e1,e2,…,em外)。

贪心算法2中,第一步耗费O(nlgn);第二步需要计算n-1次距离与n-2次比较;第三步求pk要计算n-2次的距离与n-3次比较;第四步要进行(n-3)×3次的距离计算及(n-4)×3次比较;第五步至多进行n-6次的距离计算与n-7次比较;第六步到第五步的循环次数不超过3n-9;因此整个贪心算法2的时间复杂性为

O(nlgn)+O(n)+O(n)+O(n)+(n-6)×(3n-9)=O(n2)

⑻ 关于编程的贪心法

定义
所谓贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。 贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
[编辑本段]贪心算法的基本思路
1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步 do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解。 下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。
[编辑本段]例题分析
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。 要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。 物品 A B C D E F G 重量 35 30 60 50 40 10 25 价值 10 40 30 50 35 40 30 分析: 目标函数: ∑pi最大 约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150) (1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优? (2)每次挑选所占重量最小的物品装入是否能得到最优解? (3)每次选取单位重量价值最大的物品,成为解本题的策略。 值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。 贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。 可惜的是,它需要证明后才能真正运用到题目的算法中。 一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。 对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下: (1)贪心策略:选取价值最大者。 反例: W=30 物品:A B C 重量:28 12 12 价值:30 20 20 根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。 (2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。 (3)贪心策略:选取单位重量价值最大的物品。 反例: W=30 物品:A B C 重量:28 20 10 价值:28 20 10 根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。 【注意:如果物品可以分割为任意大小,那么策略3可得最优解】 对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。 但是,如果题目是如下所示,这个策略就也不行了。 W=40 物品:A B C 重量:28 20 15 价值:28 20 15 附:本题是个NP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
[编辑本段]备注
贪心算法当然也有正确的时候。求最小生成树的Prim算法和Kruskal算法都是漂亮的贪心算法。 所以需要说明的是,贪心算法可以与随机化算法一起使用,具体的例子就不再多举了。(因为这一类算法普及性不高,而且技术含量是非常高的,需要通过一些反例确定随机的对象是什么,随机程度如何,但也是不能保证完全正确,只能是极大的几率正确)
[编辑本段]附贪心算法成功案例之一
马踏棋盘的贪心算法 123041-23 XX 【问题描述】 马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条最短路径。 【初步设计】 首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下: 1、 输入初始位置坐标x,y; 2、 步骤 c: 如果c> 64输出一个解,返回上一步骤c-- (x,y) ← c 计算(x,y)的八个方位的子结点,选出那此可行的子结点 循环遍历所有可行子结点,步骤c++重复2 显然(2)是一个递归调用的过程,大致如下: void dfs(int x,int y,int count) { int i,tx,ty; if(count> N*N) { output_solution();//输入一个解 return; }

⑼ 贪心算法 活动安排问题

这道题的贪心算法比较容易理解,我就不多说明了,只是提到一下算法思路1、建立数学模型描述问题。我在这里将时间理解成一条直线,上面有若干个点,可能是某些活动的起始时间点,或终止时间点。在具体一下,如果编程来实现的话,将时间抽象成链表数组,数组下标代表其实时间,该下标对应的链表代表在这个时间起始的活动都有哪些,具体参照程序注释。2、问题分解。为了安排更多的活动,那么每次选取占用时间最少的活动就好。那么从一开始就选取结束时间最早的,然后寻找在这个时间点上起始的活动,以此类推就可以找出贪心解。程序代码:#include<stdio.h>
struct inode //自定义的结构体
{
int end; //表示结束时间
inode *next; //指向下一个节点的指针
};int main()
{
inode start[10001],*pt;
int a,b,i,num=0; //num负责计数,i控制循环,a,b输入时候使用
for(i=0;i<10001;i++) //初始化
{
start[i].next=NULL;
}
while(scanf("%d %d",&a,&b)) //输入并建立数据结构
{
if(a==0&&b==0) break;
pt=new inode; //创建新的节点,然后将该节点插入相应的位置
pt->end=b;
pt->next=start[a].next;
start[a].next=pt;
}
i=0;
while(i<10001) //进行贪心算法,i表示当前时间
{
if(start[i].next==NULL)
{
i++; //该时间无活动开始
}
else
{
int temp=10001; //临时变量,存储该链表中最早的终止时间
for(pt=start[i].next;pt!=NULL;pt=pt->next)
{
if(pt->end<temp)
{
temp=pt->end;
}
}
i=temp; //将当前时间设置成前一子问题的终止时间
num++;
}
}
printf("%d\n",num); //打印结果
return 0;
}代码并不一定是最快速的,但是可以求出贪心解,如果你做的是ACM编程题目,不保证能AC注释我尽力写了,希望对你有帮助。

阅读全文

与贪心算法相关的资料

热点内容
锋云服务器怎么添加硬盘 浏览:644
推币机app都有什么 浏览:727
团员图片怎么收集压缩 浏览:345
安卓s9什么时候发布 浏览:220
怎么消除xp文件夹中的虚拟文件 浏览:776
本田电装空调压缩机 浏览:220
最好单片机有哪些 浏览:590
php商城模块 浏览:489
如何下载端游手机版安卓 浏览:141
有什么健身房app 浏览:68
程序员给女朋友转4千 浏览:350
服务器群集怎么样 浏览:800
珠海源码房地产销售系统哪家专业 浏览:199
什么app可以鉴别古董 浏览:15
未成年怎么办理车辆解压手续 浏览:600
有什么app孕期食谱 浏览:58
通过加密技术对消息进行加密 浏览:651
高压缩dvd 浏览:674
java数独算法 浏览:413
系统数据传输加密的三种方式 浏览:337