‘壹’ 箱形图的箱形图的绘制
箱形图提供了一种只用5个点对数据集做简单总结的方式。这5个点包括中点、Q1、Q3、分部状态的高位和低位。箱形图很形象的分为中心、延伸以及分部状态的全部范围
箱形图中最重要的是对相关统计点的计算,相关统计点都可以通过百分位计算方法进行实现。
箱形图的绘制步骤:
1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。在矩形盒内部中位数(Xm)位置画一条线段为中位线。
3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在Q3+3IQR和Q1-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。四分位距=Q3-Q1。.
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱形图便绘出了。统计软件绘制的箱形图一般没有标出内限和外限。
‘贰’ 如何制作箱形图
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。
‘叁’ 什么是箱形图,如何看懂箱形图
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图,因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。
看股票K线是炒股最常用的方法之一。想投资股票,可以利用K线找到“规律”这样可以更好的进行投资决策,获取收益。
下面就来跟大家详细说明一下K线,教大家怎么去了解它。
分享之前,先免费送给大家几个炒股神器,能帮你收集分析数据、估值、了解最新资讯等等,都是我常用的实用工具,建议收藏:炒股的九大神器免费领取(附分享码)
一、 股票K线是什么意思?
K线图也可以被叫作蜡烛图、日本线或者是阴阳线,我们常叫K线,它最先用于分析米价的趋势的,再后来,股票、期货、期权等证券市场都开始使用它。
影线和实体构成形为柱状的k线。影线在实体上方的部分叫上影线,下方的部分叫下影线,实体分阳线和阴线。
Ps:影线代表的是当天交易的最高和最低价,实体表示的是当天的开盘价和收盘价。
其中阳线常用红色、白色柱体或者黑框空心来表示,而选择用绿色、黑色或者蓝色实体柱来代表阴线,
除了以上情况,“十字线”被我们观测到的时候,一条线是实体部分改变后的形态。
其实十字线的意思很简单,十字线可以反映出当天的收盘价=开盘价。
把K线弄明白了,我们轻易可以抓住买卖点(虽然股市根本是没有办法预测的,但是K线也会有一定的指导的价值的),对于新手来说最好掌握。
这里我要给大家提醒一下,K线分析起来是比较难的,若是刚刚炒股的你还不了解K线,建议用一些辅助工具来帮你判断一只股票是否值得买。
比如说下面的诊股链接,输入你中意的股票代码,就能自动帮你估值、分析大盘形势等等,我刚开始炒股的时候就用这种方法来过渡,非常方便:【免费】测一测你的股票当前估值位置?
下面我就跟大家说说关于几个K线分析的小窍门儿,一些简单的内容帮助你尽快知道。
二、怎么用股票K线进行技术分析?
1、实体线为阴线
股票成交量是怎样的,这个时候是我们要重视的,如果成交量不大,说明股价可能会短期下降;而成交量很大,那多半股价要长期下跌了。
2、实体线为阳线
实体线为阳线代表了什么?代表股价上涨动力更足,可具体是否是长期上涨,想要判断还得结合其他指标才行。
比如说大盘形式、行业前景、估值等等因素/指标,但是由于篇幅问题,不能展开细讲,大家可以点击下方链接了解:新手小白必备的股市基础知识大全
应答时间:2021-09-24,最新业务变化以文中链接内展示的数据为准,请点击查看
‘肆’ 箱形图 原理
上文讲了很久的识别异常值,其实箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不会影响箱形图的数据形状,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。
对于标准正态分布的样本,只有极少值为异常值。异常值越多说明尾部越重,自由度越小(即自由变动的量的个数);
而偏态表示偏离程度,异常值集中在较小值一侧,则分布呈左偏态;异常值集中在较大值一侧,则分布呈右偏态。
同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便昭然若揭。如上图,可直观得看出第三季度各分公司的销售额大体都在下降。
但箱形图也有他的局限性,比如:不能精确地衡量数据分布的偏态和尾重程度;对于批量比较大的数据,反映的信息更加模糊以及用中位数代表总体评价水平有一定的局限性。
5分钟包你搞懂箱形图分析!
‘伍’ 箱形图怎么分析
箱形图分析方法如下:
1、下四分位数Q1
(1)确定四分位数的位置。Qi所在位置=i(n+1)/4,其中i=1,2,3。n表示序列中包含的项数。
(2)根据位置,计算相应的四分位数。例中:Q1所在的位置=(14+1)/4=3.75,Q1=0.25×第三项+0.75×第四项=0.25×17+0.75×19=18.5。
4、上限是非异常范围内的最大值。首先要知道什么是四分位距如何计算的四分位距IQR=Q3-Q1,那么上限=Q3+1.5IQR。
5、下限是非异常范围内的最小值。下限=Q1-1.5IQR。
‘陆’ 箱线图 入门 01
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作 显示一组数据分散情况 资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于 品质管理 。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。箱线图的绘制方法是:先找出一组数据的 最大值、最小值、中位数 和两个 四分位数 ;然后, 连接两个四分位数画出箱子;再将最大值和最小值与箱子相连接,中位数在箱子中间。
如上图所示,图中主要包含六个数据节点,将一组数据从大到小排列,分别计算出他的 上边缘 , 上 四分位数 Q3 , 中位数 , 下四分位数Q1 , 下边缘 ,还有一个 异常值 。
使用5个点对 数据集 做简单总结,这5个点包括中点、上下四分位数Q1、Q3、分部状态的高位和低位(上下边缘)。箱形图很形象的分为中心、延伸以及分布状态的全部范围。
箱形图中最重要的是对相关统计点的计算,相关统计点都可以通过 百分位 计算方法进行实现。
1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的 全距 稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下 四分位数 (Q3和Q1)。在矩形盒内部中位数(Xm)位置画一条线段为 中位线 。
3、在Q3+1.5 IQR 和Q1-1.5 IQR 处画两条与中位线一样的线段,这两条线段为 异常值 截断点,称其为 内限 ;
在Q3+3IQR和Q1-3IQR处画两条线段,称其为 外限 。
处于内限以外位置的点表示的数据都是异常值,其中在 内限与外限之间的异常值为温和的异常值 (mild outliers),在 外限以外的为极端的异常值(extreme outliers) 。
Remark: 四分位距IQR=Q3-Q1
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的 分布区间 。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。
相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。
至此一批数据的箱形图便绘出了。
统计软件 绘制的箱形图一般没有标出内限和外限。 ?
1.体现数据的异常值
一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,会对结果会带来 不良影响 ;重视异常值的出现,分析其产生的原因,常常成为 发现问题 进而 改进决策 的契机。
箱形图为我们提供了识别异常值的一个标准:小于Q1-1.5IQR或大于Q3+1.5IQR的值为异常值; 这种方法来源于经验判断,但经验表明它在处理需要特别注意的数据方面表现不错。
箱形图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱形图判断异常值的标准以 四分位数 和 四分位距 为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱形图识别异常值的结果比较客观。
因此,箱形图在识别异常值方面有一定的优越性。
2.反映数据的偏态和尾重
对于标准正态分布的大样本,中位数位于上下四分位数的中央,箱形图的方盒关于中位线对称。中位数越偏离上下四分位数的中心位置,分布偏态性越强。异常值集中在较大值一侧,则分布呈现右偏态;异常值集中在较小值一侧,则分布呈现左偏态。
3.反映数据的形状
在同一数轴上,几批数据的箱形图并行排列,几批数据的 中位数 、 尾长 、 异常值 、分布区间等形状信息便一目了然。箱子的上下限,分别是数据的上四分位数和下四分位数。这意味着箱子包含了50%的数据。因此,箱子的宽度在一定程度上反映了数据的波动程度。箱体越扁说明数据越集中,端线(也就是“须”)越短也说明数据集中。
‘柒’ 箱线图的上下边缘值怎么计算
箱线图的上下边缘值计算方法需要上下虚线标齐,然后需要通过上下边缘的正切值除去异常值后的,最大或最小值然后就能得出数据。因为箱线图的上下边缘值在一定区间内可以任意取值的变量从而获得连续变量,其数值是连续不断的,可视化这类数据的图表使得箱形图上下边缘同步化。
并且箱子的上下限,分别是数据的上四分位数和下四分位数,这意味着箱子包含了50%的数据,因此,箱子的宽度在一定程度上反映了数据的波动程度,箱体越扁说明数据越集中,端线也就是须越短也说明数据集中。
箱形图上下边缘值还可以通过观察数据整体的分布情况进行计算,主要需要利用中位数,25/%分位数,75/%分位数,上边界,下边界等统计量来来描述数据的整体分布情况。
通过计算这些统计量,生成一个箱体图,箱体包含了大部分的正常数据,而在箱体上边界和下边界之外的,就是异常数据,从而完成箱线图的上下边缘值计算。