Ⅰ 排列组合(A、C)的详细算法
A(a,b)=a!/b!
C(a,b)=a!/[b!*(a-b)!]
Ⅱ 关于数学排列组合,A什么的C什么的到底怎么算举个例子。。
A开头的叫排列,C开头的叫组合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
注:当且仅当两个排列的元素完全相同,且元素的排列顺序也相同,则两个排列相同。例如,abc与abd的元素不完全相同,它们是不同的排列;又如abc与acb,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
Ⅲ 排列组合中的C和A怎么算
排列组合中的C和A计算方法如下:
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合注意:
对于某几个要求相邻的排列组合问题,可将相邻的元素看做一个“元”与其他元素排列,然后对“元”的内部进行排列。注意事项: 对于某几个元素不相邻的排列问题,可先讲其他元素排好,再将不相邻的元素在已排列好的元素之间空隙中及两端插入即可。
Ⅳ 排列组合中A和C的算法怎么算的,查了百度都不会,求详细点的谢谢(高中)
排列数 A(n,m) ----------即 字母A右下角n 右上角m,表示n取m的排列数
A(n,m)=n!/(n-m)!=n*(n-1)*(n-2)*……*(n-m+1)
A(n,m)等于从n 开始连续递减的 m 个自然数的积
n取m的排列数 A(n,m) 等于从n 开始连续递减的 m 个自然数的积
例: A(7,3)=7*6*5=210
组合数 C(n,m) ----------即 字母C右下角n 右上角m,表示n取m的排列数
C(n,m)=n!/(m!*(n-m)!)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
C(n,m)等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
n选m的组合数 C(n,m) 等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
例: C(7,3)=7*6*5/(1*2*3)=35
Ⅳ 排列组合中的C和A怎么算
C:指从几个中选取出来,不排列,只组合
如C2 4是指从4个中选2个,不管它们的内部的顺序
A:指把几个不但选出来,还要进行排列
如A2 4是指从四个中选出2个来,而且对他们的顺序是有要求的,顺序不一样,结果就是不一样的
如有疑问,请追问;如已解决,请采纳
Ⅵ 排列组合A几几C几几的,有什么区别,都怎么计算来的
1、区别
排列数就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合数是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(m,n) 表示。
例:从26个字母中选5个
排列:A(26,5)表示的是从26个字母中选5个排成一列;即ABCDE与ACBDE与ADBCE等这些是不一样的。
组合:C(26,5)表示的是从26个字母中选5个没有顺序;即ABCDE与ACBDE与ADBCE等这些是一样的。
2、计算
(1)排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
(6)排列a和c用法算法扩展阅读:
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为自然数。
(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
Ⅶ 排列组合中A和C怎么算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(7)排列a和c用法算法扩展阅读:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
Ⅷ c和a排列组合计算公式含义,排列组合公式a和c计算方法
1.c和a排列组合计算公式区别A是排列,和次序有关,C是组合,和次序无关。
2.排列组合是组合学最基本的概念。
3.所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
4.组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
5.排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
6.排列组合和古典概率论关系密切。
7.从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
8.从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
9.用符号C(n,m)表示。
Ⅸ 排列组合中的c和a怎么算
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(9)排列a和c用法算法扩展阅读
难点:
⑴从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
⑵限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
⑶计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
⑷计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
Ⅹ 排列组合中的C和A怎么算
C是组合的意思,A是排列的意思,C和A没有别的意义,不代表数值。比如A(5,2),5是下角标,2是上角标,表示从5个数中取出2个数进行排列,那么总共有5*4=20种排列,A(5,2)=20,C同理,C(5,2)=5*4/2*1=10种组合