导航:首页 > 源码编译 > 决策算法

决策算法

发布时间:2022-02-09 05:49:24

⑴ 决策树chaid算法 怎么解释结果

数据挖掘的核心是为数据建立模型的过程。所有的数据挖掘产品都有这个建模过程,不同的是它们构造模型的方式互不相同。进行数据挖掘时可采用许多不同的算法。决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。

⑵ 决策树的算法

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
具体算法步骤如下;
1创建节点N
2如果训练集为空,在返回节点N标记为Failure
3如果训练集中的所有记录都属于同一个类别,则以该类别标记节点N
4如果候选属性为空,则返回N作为叶节点,标记为训练集中最普通的类;
5for each 候选属性 attribute_list
6if 候选属性是连续的then
7对该属性进行离散化
8选择候选属性attribute_list中具有最高信息增益率的属性D
9标记节点N为属性D
10for each 属性D的一致值d
11由节点N长出一个条件为D=d的分支
12设s是训练集中D=d的训练样本的集合
13if s为空
14加上一个树叶,标记为训练集中最普通的类
15else加上一个有C4.5(R - {D},C,s)返回的点 背景:
分类与回归树(CART——Classification And Regression Tree)) 是一种非常有趣并且十分有效的非参数分类和回归方法。它通过构建二叉树达到预测目的。
分类与回归树CART 模型最早由Breiman 等人提出,已经在统计领域和数据挖掘技术中普遍使用。它采用与传统统计学完全不同的方式构建预测准则,它是以二叉树的形式给出,易于理解、使用和解释。由CART 模型构建的预测树在很多情况下比常用的统计方法构建的代数学预测准则更加准确,且数据越复杂、变量越多,算法的优越性就越显着。模型的关键是预测准则的构建,准确的。
定义:
分类和回归首先利用已知的多变量数据构建预测准则, 进而根据其它变量值对一个变量进行预测。在分类中, 人们往往先对某一客体进行各种测量, 然后利用一定的分类准则确定该客体归属那一类。例如, 给定某一化石的鉴定特征, 预测该化石属那一科、那一属, 甚至那一种。另外一个例子是, 已知某一地区的地质和物化探信息, 预测该区是否有矿。回归则与分类不同, 它被用来预测客体的某一数值, 而不是客体的归类。例如, 给定某一地区的矿产资源特征, 预测该区的资源量。

⑶ 决策树算法的典型算法

决策树的典型算法有ID3,C4.5,CART等。
国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。C4.5算法产生的分类规则易于理解,准确率较高。不过在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,在实际应用中因而会导致算法的低效。
决策树算法的优点如下:
(1)分类精度高;
(2)生成的模式简单;
(3)对噪声数据有很好的健壮性。
因而是目前应用最为广泛的归纳推理算法之一,在数据挖掘中受到研究者的广泛关注。

⑷ 决策树算法原理是什么

决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的 内部节点(非 叶子节点)一般表示为一个逻辑判断,如形式为a=aj的逻辑判断,其中a是属性,aj是该属性的所有取值:树的边是逻辑判断的分支结果。

多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个 属性值就有几条边。树的叶子节点都是类别标记。

由于数据表示不当、有噪声或者由于决策树生成时产生重复的子树等原因,都会造成产生的决策树过大。

因此,简化决策树是一个不可缺少的环节。寻找一棵最优决策树,主要应解决以下3个最优化问题:①生成最少数目的叶子节点;②生成的每个叶子节点的深度最小;③生成的决策树叶子节点最少且每个叶子节点的深度最小。

(4)决策算法扩展阅读:

决策树算法的优点如下:

(1)分类精度高;

(2)生成的模式简单;

(3)对噪声数据有很好的健壮性。

因而是目前应用最为广泛的归纳推理算法之一,在 数据挖掘中受到研究者的广泛关注。

⑸ 目前比较流行的决策树算法有哪些

ID3算法,最简单的决策树
c4.5 是最经典的决策树算法,选择信息差异率最大的作为分割属性。
CART算法,适合用于回归

⑹ 常见决策树分类算法都有哪些

在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法
C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法
CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法
ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点
ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想
根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。
在这篇文章中我们给大家介绍了决策树分类算法的具体内容,包括有很多种算法。从中我们不难发现决策树的算法都是经过不不断的改造趋于成熟的。所以说,机器学习的发展在某种程度上就是由于这些算法的进步而来的。

⑺ 决策树算法和朴素贝叶斯算法的区别

不属于!决策树算法主要包括id3,c45,cart等算法,生成树形决策树,而朴素贝叶斯是利用贝叶斯定律,根据先验概率求算后验概率。

⑻ 决策树算法是按什么来进行分类的

决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

⑼ 拼多多决策和算法

摘要 在电商平台,成立之初的花钱买流量显然已成为行业定律。有如拼多多浴火重生,在一片质疑声中市值一路走高,成为目前国内市值第七的电商平台;也有引火上身,最终成为成为电商时代牺牲品的众多APP。摘掉有色眼镜,理性看待拼多多,才能从其经营策略中寻求电商平台发展的更多可能性。

⑽ 数据挖掘中决策树算法

决策树算法有很多种,比喻有ID3(利用信息增益来选择决策变量),C4.5(利用信息增益率来选择决策变量),CART,chain以及quest等,不同的决策树适用情况也不一样,有机会可以多多交流。。

阅读全文

与决策算法相关的资料

热点内容
c类库pdf 浏览:598
查看当前连接命令 浏览:423
可以加密视频吗 浏览:508
心电图算法更新 浏览:561
开封拍违章挣钱的app叫什么 浏览:469
计算机与编程基础知识 浏览:481
北京公交一卡通app叫什么名字 浏览:376
淮北前端程序员私活小程序 浏览:277
锋云服务器怎么添加硬盘 浏览:644
推币机app都有什么 浏览:727
团员图片怎么收集压缩 浏览:345
安卓s9什么时候发布 浏览:220
怎么消除xp文件夹中的虚拟文件 浏览:776
本田电装空调压缩机 浏览:220
最好单片机有哪些 浏览:590
php商城模块 浏览:489
如何下载端游手机版安卓 浏览:141
有什么健身房app 浏览:68
程序员给女朋友转4千 浏览:350
服务器群集怎么样 浏览:800