导航:首页 > 源码编译 > 合并排序经典算法

合并排序经典算法

发布时间:2022-12-31 02:41:28

1. 求归并排序算法

归并排序。

1.这里,在把数组暂时复制到临时数组时,将第二个子数组中的顺序颠倒了一下。这样,两个子数组从两端开始处理,使得他们互相成为另一个数组的“检查哨”。 这个方法是由R.Sedgewick发明的归并排序的优化。

2.在数组小于某一阀值时,不继续归并,而直接使用插入排序,提高效率。这里根据Record的结构,将阀值定位 16。

#define THRESHOLD 16

typedef struct _Record{
int data; //数据
int key; //键值
}Record;

//供用户调用的排序 函数
void Sort(Record Array[], Record TempArray, int left, int right){
TwoWayMergeSort(Array, TempArray, left, right);
}

//归并排序
void TwoWayMergeSort(Record Array[], Record TempArray[],
int left, int right)
{
if(right <= left) return; //如果只含一个元素,直接返回
if( right-left+1 ){ //如果序列长度大于阀值,继续递归
int middle = (left + right)/2;
Sort(Array, TempArray, left, middle); //对左面进行递归
Sort(Array, TempArray, left, right, middle); //对右面进行递归
Merge(Array, TempArray, left, right, middle); //合并
}
else{
//如果序列长度小于阀值,采用直接插入排序,达到最佳效果
ImproveInsertSorter(&Array[left], right-left+1);
}
}

//归并过程
void Merge(Record Array[], Record TempArray[],
int left, int right, int middle)
{
int index1, index2; //两个子序列的起始位置
int k;

复制左边的子序列
for(int i=1; i<=middle; i++){
TempArray[i] = Array[i];
}

//复制右边的子序列,但顺序颠倒过来
for(int j=1; j<=right-middle; j++){
TempArray[right-j+1] = Array[j+middle];
}

//开始归并
for(index1=left, index2=right, k=left; k<=right; k++){
if(TempArray[index1].key<TempArray[index2].key){
Array[k] = TempArray[index++];
}
else{
Array[k] = TempArray[index2--];
}
}
}

//当长度小于阀值时 使用的直接插入排序的代码
void ImproveInsertSorter(Record Array[], int size){
Record TempRecord; //临时变量

for(int i=1; i<size; i++){
TempRecord = Array[i];
int j = i-1;
//从i开始往前寻找记录i的正确位置
while(j>=0 && TempRecord.key<Array[j].key){
Array[j+1] = Array[j];
j = j-1;
}

Array[j+1] = TempRecord;
}
}

终于敲完了。。。 第一次回答问题, 只是觉得好玩`

2. 数据结构--归并排序与基数排序

一、归并排序
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。将两个或以上的有序表组合成一个新的有序表。
1、2-路归并排序
初始序列含有n个记录,可看成n个有序的子序列,每个子序列的长度为1,然后两两归并,得到[n/2]个长度为2或1的有序子序列,再两两归并,如此重复,直至得到一个长度为n的有序序列为止。
2、举例

上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],实现步骤:

Tips:
排序算法的稳定性:保证排序前2个相等的数,在序列中的前后位置顺序和排序后它们两个的前后位置顺序相同。例如,Ai = Aj,Ai排序前位于Aj的前面,排序后Ai还位于Aj的前面。
稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就 是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
排序算法是否为稳定的是由具体算法决定的,不稳定的算法在某种条件下可以变为稳定的算法,而稳定的算法在某种条件下也可以变为不稳定的算法。
例如,对于如下冒泡排序算法,原本是稳定的排序算法,如果将记录交换的条件改成r[j]>=r[j+1],则两个相等的记录就会交换位置,从而变成不稳定的算法。

堆排序、快速排序、希尔排序、直接选择排序不是稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法。

一、基数排序
基数排序是一种借助多关键字排序的思想对单逻辑关键字进行排序的方法。
1、什么是多关键字
已知扑克牌中52张牌面的次序关系为:

1、最高位优先于最低位优先

假设有n个记录的序列{R 1 ,R 2 ,...R n },且每个记录R i 中含有d个关键字(K i 1 ,K i 2 ,...,K i d ),序列{R 1 ,R 2 ,...R n }对关键字(K 1 ,K 2 ,...,K d )有序是指:对于序列中任意两个记录R i 和R j (1 <= i < j <= n)都满足下列有序关系:(K i 1 ,K i 2 ,...,K i d )<(K j 1 ,K j 2 ,...,K j d ),其中K 1 称为最高位关键字,K d 称为最低位关键字。

实现多关键字排序的方法:
A、先对最高位关键字K 1 进行排序,间序列分成若干子序列,每个子序列中的记录都具有相同的K 1 值,然后分别对每个子序列对关键字K 2 进行排序,按K 2 值不同再分成若干更小的子序列,依次重复,直到对K d-1 进行排序后得到的每一子序列中的记录都具有相同的关键字(K 1 ,K 2 ,...,K d-1 ),而后每个子序列分别对K d 进行排序,最后将所要子序列依次连接在一起成为一个有序序列,这种方法为“最高位优先(MSD)”
B、先从最低位关键字K d 进行排序,在对高一位的关键字K d-1 进行排序,依次重复,直至对K 1 进行排序后便成为一个有序序列。这种方法称为“最低位优先(LSD)”。

三、内部排序方法的比较

结论:
1、表中的“简单排序”指:除希尔排序外的所有插入排序,冒泡排序和简单选择排序,其中之间插入排序最简单,当序列中的记录“基本有序”或n值较小时,它是最佳的排序方法,因此常将他和其他排序方法(快排,归并排序)结合在一起使用。
2、从平均时间性能看,快排最省时间,但他在最坏情况下的时间性能不如堆排序和归并排序。在n较大,归并排序所需时间比堆排序少,但所需的辅助存储量最多。
3、基数排序适用于n值很大且关键字较小的序列。

3. 常见的排序算法—选择,冒泡,插入,快速,归并

太久没看代码了,最近打算复习一下java,又突然想到了排序算法,就把几种常见的排序算法用java敲了一遍,这里统一将无序的序列从小到大排列。

选择排序是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小元素,继续放在下一个位置,直到待排序元素个数为0。

选择排序代码如下:

public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

冒泡排序是一种比较基础的排序算法,其思想是相邻的元素两两比较,较大的元素放后面,较小的元素放前面,这样一次循环下来,最大元素就会归位,若数组中元素个数为n,则经过(n-1)次后,所有元素就依次从小到大排好序了。整个过程如同气泡冒起,因此被称作冒泡排序。

选择排序代码如下:

public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

插入排序也是一种常见的排序算法,插入排序的思想是:创建一个与待排序数组等大的数组,每次取出一个待排序数组中的元素,然后将其插入到新数组中合适的位置,使新数组中的元素保持从小到大的顺序。

插入排序代码如下:

public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}

快速排序的效率比冒泡排序算法有大幅提升。因为使用冒泡排序时,一次外循环只能归位一个值,有n个元素最多就要执行(n-1)次外循环。而使用快速排序时,一次可以将所有元素按大小分成两堆,也就是平均情况下需要logn轮就可以完成排序。

快速排序的思想是:每趟排序时选出一个基准值(这里以首元素为基准值),然后将所有元素与该基准值比较,并按大小分成左右两堆,然后递归执行该过程,直到所有元素都完成排序。

public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}

归并排序是建立在归并操作上的一种有效的排序算法,归并排序对序列的元素进行逐层折半分组,然后从最小分组开始比较排序,每两个小分组合并成一个大的分组,逐层进行,最终所有的元素都是有序的。

public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

归并排序这里我使用了left,right等变量,使其可以通用,并没有直接用数字表示那么明确,所以给出相关伪代码,便于理解。

Mergesort(arr[0...n-1])

//输入:一个可排序数组arr[0...n-1]

//输出:非降序排列的数组arr[0...n-1]

if n>1

arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//确保arr_1中元素个数>=arr_2中元素个数

//对于总个数为奇数时,arr_1比arr_2中元素多一个;对于总个数为偶数时,没有影响

arr[n/2...n-1] to arr_2[0...n/2-1]

Mergesort(arr_1[0...(n+1)/2-1])

Mergesort(arr_2[0...n/2-1])

Merge(arr_1,arr_2,arr)

Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])

//输入:两个有序数组arr_1[0...p-1]和arr_2[0...q-1]

//输出:将arr_1与arr_2两数组合并到arr

int i<-0;j<-0;k<-0

while i

<p span="" do<="" j

if arr_1[i] <= arr_2[j]

arr[k] <- arr_1[i]

i<-i+1

else arr[k] <- arr_2[j];j<-j+1

k<-k+1

if i=p

arr_2[j...q-1] to arr[k...p+q-1]

else arr_1[i...p-1] to arr[k...p+q-1]

package test_1;

import java.util.Scanner;

public class Test01 {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int[] arr_1 = new int[10];

for(int i = 0 ; i < 10 ; i++)

arr_1[i] = sc.nextInt();

Sort demo_1 = new Sort();


//1~5一次只能运行一个,若多个同时运行,则只有第一个有效,后面几个是无效排序。因为第一个运行的已经将带排序数组排好序。


demo_1.Select_sort(arr_1);//-----------------------1


//demo_1.Bubble_sort(arr_1);//---------------------2


/* //---------------------3

demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);

System.out.print("经过快速排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/


//demo_1.Insert_sort(arr_1);//--------------------4


/* //--------------------5

demo_1.Mergesort(arr_1,0,arr_1.length - 1);

System.out.print("经过归并排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/

}

}

class Sort {

public void swap(int arr[],int a, int b) {

int t;

t = arr[a];

arr[a] = arr[b];

arr[b] = t;

}


public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}


public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}


public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

}

若有错误,麻烦指正,不胜感激。

4. [求助] 自然合并排序的算法

#include "stdio.h" //输入输出的库函数
#include "stdlib.h" //自然生成数据的库函数
int n; //全局变量,数组的长度
//函数的定义
void zgb(int *p); //自然分组的规划
void zgb1(int x,int y,int *q,int *p,int m); //递归实现的分治策略
void zgb2(int x,int y,int z,int *p); //排序函数
int main() //主函数
{
int i,m;
char ch=13; //变量的定义
while(1) //主菜单选择的循环
{
if(ch==13); //判断控制换行
system("cls"); //清屏
printf("------------请选择:--------------\n1、运行程序。\n0、退出程序。\n"); //主菜单
scanf("%d",&m); //接受菜单选择值
system("cls"); //清屏
if(!m) //判断程序是否执行。
exit(0); //如果m的值非1,则执行退出
printf("请输入数列的长度n。\n"); //提示语句
scanf("%d",&n); //从键盘输入一个值给n,规定数组的长度
int *a=new int[n]; //定义原数据数组
printf("随机数列如下:\n");
for(i=0; i<n; i++)
printf("%4d",a[i]=rand()%100); //动态生成数组的数据
printf("\n");
zgb(a); //调用自然分组的函数
printf("自然归并排序的结果如下:\n");
for(i=0; i<n; i++)
printf("%4d",a[i]); //输入最终排序号的结果数组
printf("\n");
scanf("%c%c",&ch,&ch); //接受最终的回车符,进入主菜单的下次循环
}
return 0;
}
void zgb(int *p) //自然分组函数
{
int i,m;
int *b=new int[n];//定义保存自然分组的起始下标值的数组
m=0;
b[0]=0;
for(i=1; i<n-1; i++)
if(p[i]>p[i+1]) //判断取得起始下标的值
b[m+=1]=i+1;
printf("每次排序前的分段下标如下:\n");
while(1) //进入分治策略的循环
{
for(i=0; i<=m; i++)
printf("%d\t",b[i]); //输出每次进入排序前的自然分组的起始下标值
printf("\n");
int k=0;
zgb1(0,m,b,p,m); //调用递归分治策略的函数
for(i=0; i<=m; i++)
{
if(b[i]!=-1&&b[k]==-1)
{
b[k]=b[i];
b[i]=-1; //合并后的起始下标的位子去除
}
if(b[k]!=-1)
k++;
}
m=k-1;
if(m<=0) //控制循环的退出
{
printf("0\n");
break;
}
}
}
void zgb1(int x,int y,int *q,int *p,int m) //分治策略函数
{
if(y-x==1) //判断下标的值域
{
if(y==m) //判断临界值,选择排序值的调用
zgb2(q[x],q[y],n,p);
else
zgb2(q[x],q[y],q[y+1],p); //调用排序函数
q[y]=-1;
}
int h=(x+y)/2; //计算规划值
if(y-x>=2)
{
zgb1(x,h,q,p,m); //递归调用函数本身
zgb1(h+1,y,q,p,m);
}

}
/*
排序函数
*/
void zgb2(int x,int y,int z,int *p)
{
int i,j,k,s;
for(i=y; i<z; i++)
for(j=x; j<z; j++)
if(p[i]<p[j])
{
k=p[i];
p[i]=p[j];
p[j]=k;
}
}

5. 常见的几种排序算法总结

对于非科班生的我来说,算法似乎对我来说是个难点,查阅了一些资料,趁此来了解一下几种排序算法。
首先了解一下,什么是程序

关于排序算法通常我们所说的往往指的是内部排序算法,即数据记录在内存中进行排序。
排序算法大体可分为两种:
一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等

冒泡排序它重复地走访过要排序的元素,一次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

选择排序类似于冒泡排序,只不过选择排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然后再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。

插入排序比冒泡排序和选择排序更有效率,插入排序类似于生活中抓扑克牌来。
插入排序具体算法描述,以数组[3, 2, 4, 5, 1]为例。

前面三种排序算法只有教学价值,因为效率低,很少实际使用。归并排序(Merge sort)则是一种被广泛使用的排序方法。
它的基本思想是,将两个已经排序的数组合并,要比从头开始排序所有元素来得快。因此,可以将数组拆开,分成n个只有一个元素的数组,然后不断地两两合并,直到全部排序完成。
以对数组[3, 2, 4, 5, 1] 进行从小到大排序为例,步骤如下:

有了merge函数,就可以对任意数组排序了。基本方法是将数组不断地拆成两半,直到每一半只包含零个元素或一个元素为止,然后就用merge函数,将拆成两半的数组不断合并,直到合并成一整个排序完成的数组。

快速排序(quick sort)是公认最快的排序算法之一,有着广泛的应用。
快速排序算法步骤

参考:
常用排序算法总结(一)
阮一峰-算法总结

6. 面试必会八大排序算法(Python)

一、插入排序

介绍

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。

算法适用于少量数据的排序,时间复杂度为O(n^2)。

插入排算法是稳定的排序方法。

步骤

①从第一个元素开始,该元素可以认为已经被排序

②取出下一个元素,在已经排序的元素序列中从后向前扫描

③如果该元素(已排序)大于新元素,将该元素移到下一位置

④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⑤将新元素插入到该位置中

⑥重复步骤2

排序演示

算法实现

二、冒泡排序

介绍

冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

原理

循环遍历列表,每次循环找出循环最大的元素排在后面;

需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。

步骤

①比较相邻的元素。如果第一个比第二个大,就交换他们两个。

②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

③针对所有的元素重复以上的步骤,除了最后一个。

④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现:

三、快速排序

介绍

快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填数 + 分治法。

首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现步骤

①从数列中挑出一个元素,称为 “基准”(pivot);

②重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边);

③对所有两个小数列重复第二步,直至各区间只有一个数。

排序演示

算法实现

四、希尔排序

介绍

希尔排序(Shell Sort)是插入排序的一种,也是缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,时间复杂度为:O(1.3n)。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

·插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;

·但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。

基本思想

①希尔排序是把记录按下标的一定量分组,对每组使用直接插入算法排序;

②随着增量逐渐减少,每组包1含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法被终止。

排序演示

算法实现

五、选择排序

介绍

选择排序(Selection sort)是一种简单直观的排序算法,时间复杂度为Ο(n2)。

基本思想

选择排序的基本思想:比较 + 交换。

第一趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;

第二趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;

以此类推,第 i 趟,在待排序记录ri ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

排序演示

选择排序的示例动画。红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

算法实现

六、堆排序

介绍

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。

利用数组的特点快速指定索引的元素。

基本思想

堆分为大根堆和小根堆,是完全二叉树。

大根堆的要求是每个节点的值不大于其父节点的值,即A[PARENT[i]] >=A[i]。

在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

排序演示

算法实现

七、归并排序

介绍

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

基本思想

归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

算法思想

自上而下递归法(假如序列共有n个元素)

① 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;

② 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;

③ 重复步骤②,直到所有元素排序完毕。

自下而上迭代法

① 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

② 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

③ 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

④ 重复步骤③直到某一指针达到序列尾;

⑤ 将另一序列剩下的所有元素直接复制到合并序列尾。

排序演示

算法实现

八、基数排序

介绍

基数排序(Radix Sort)属于“分配式排序”,又称为“桶子法”。

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m) ,其中 r 为采取的基数,而m为堆数。

在某些时候,基数排序法的效率高于其他的稳定性排序法。

基本思想

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序按照优先从高位或低位来排序有两种实现方案:

MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等,再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列。

LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。

排序效果

算法实现

九、总结

各种排序的稳定性、时间复杂度、空间复杂度的总结:

平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;

从时间复杂度来说:

线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;

O(n1+§))排序,§是介于0和1之间的常数:希尔排序 ;

线性阶O(n)排序:基数排序,此外还有桶、箱排序。

7. 常见算法4、合并(归并)排序 Merge sort

归并排序,是创建在归并操作上的一种有效的排序算法。算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

假如如我这里有一组数据,归并排序过程如下:

通俗点来说,就是先分割,再合并。分割的过程中其实可理解为就是以二分法将数组分割成最小单元,然后再按顺序合并起来。

1、Python 3 :

2、PHP:

8. 合并排序算法

//你没写递归边界

#include<stdio.h>
#include<stdlib.h>
voidmergesort(inta[],intn);
voidmerge(inta[],intb[],inti,intc[],intj);
intmain()
{
inta[20]={1,4,7,8,9,5,4,2,3,6,7,8,5,4,2,1,5,9,6,8},j;
mergesort(a,20);
for(j=0;j<20;j++)
{
printf("%d",a[j]);
}
return0;
}
voidmergesort(inta[],intn){
if(n<=1)
return;//递归边界
inti,j;
int*b;
int*c;
b=(int*)malloc(sizeof(int)*(n/2));
c=(int*)malloc(sizeof(int)*(n-n/2));
for(i=0;i<n/2;i++){
b[i]=a[i];
}
for(j=0;j<n-n/2;j++){
c[j]=a[j+n/2];
}
mergesort(b,(n/2));
mergesort(c,(n-n/2));
merge(a,b,(n/2),c,(n-n/2));
}
voidmerge(inta[],intb[],intx,intc[],inty)
{
inti=0;
intj=0;
intk=0;
while((i<x)&&(j<y)){
if(b[i]<=c[j]){
a[k]=b[i];
i++;
}
else{
a[k]=c[j];
j++;
}
k++;
}
intl;
if(i==x){
for(l=j;l<y;l++){
a[k]=c[l];
k++;
}
}
else{
for(l=i;l<x;l++){
a[k]=b[l];
k++;
}
}
}

9. 归并排序的算法原理是什么

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,归并排序将两个已排序的表合并成一个表。
归并排序基本原理

通过对若干个有序结点序列的归并来实现排序。
所谓归并是指将若干个已排好序的部分合并成一个有序的部分。

归并排序基本思想

设两个有序的子序列(相当于输入序列)放在同一序列中相邻的位置上:array[low..m],array[m + 1..high],先将它们合并到一个局部的暂存序列 temp (相当于输出序列)中,待合并完成后将 temp 复制回 array[low..high]中,从而完成排序。

在具体的合并过程中,设置 i,j 和 p 三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较 array[i] 和 array[j] 的关键字,取关键字较小(或较大)的记录复制到 temp[p] 中,然后将被复制记录的指针 i 或 j 加 1,以及指向复制位置的指针 p加 1。重复这一过程直至两个输入的子序列有一个已全部复制完毕(不妨称其为空),此时将另一非空的子序列中剩余记录依次复制到 array 中即可。

10. Java 合并排序 求程序

网络文库找了一个http://wenku..com/view/332fd62d453610661ed9f414.html
四、合并排序 1、基本思想
合并排序的基本操作是:首先将待排序序列划分为两个长度相等的子序列;然后分别对两个子序列进行归并排序,得到两个有序的子序列;最后将两个有序的子序列合并成一个有序数列。
MergeSort(A[2*n]) {
divide A[2*n] into A[1,……,n],A[n-1,……,2*n];//划分 MergeSort(A[1,……,n]);//归并排序前半个子序列
MergeSort(A[[n-1,……,2*n]);//归并排序后半个子序列 Merge;//合并 }
2、算法复杂度分析
合并步的时间复杂度为O(n)。合并排序算法的时间复杂度为O(nlog2n)。
3、编程实现
public int[] MergeSort(int[] A, int[] tempA, int s, int t){
//如果序列中有一个以上的元素,即s<t则进行排序
if(s < t){
int center = (s + t) / 2;
MergeSort(A, tempA, s, center)
;//归并排序前半个子序列
MergeSort(A, tempA, center + 1, t);
//归并排序后半个子序列
Merge(A,tempA, s, center, t);
//合并
}
return tempA;
}

public int[] Merge(int[] A, int[] tempA, int s, int m, int t){ int n = t- s + 1;
//n为数据总个数
int i=s;j=m+1;k=s
while(i <= m&& j <= t){
//取A[i]和A[j]中较小者放入tempA[k]
if(A[i]<=A[j]){
tempA[k++] = A[i++]; }
else{
tempA[k++] = A[j++]; } }
if(i<=m) while(i<=m)
tempA[k++]=A[i++];//处理前一个子序列
else while(j<=t)
tempA[k++]=A[j++];//处理后一个子序列
return tempA;
}

阅读全文

与合并排序经典算法相关的资料

热点内容
一堆文件夹怎么弄出来 浏览:743
博途如何编译硬件 浏览:418
fortran程序pdf 浏览:504
电池消耗算法 浏览:394
服务器中断连接怎么处理 浏览:222
上世纪互联网不发达程序员很难 浏览:841
语音识别android开源 浏览:762
地埋式垃圾压缩中转站 浏览:902
apachehttpdlinux 浏览:944
快递员中通app预付款是什么 浏览:843
java路径转义 浏览:857
keytool加密算法 浏览:131
笑脸图案的APP相机是什么软件 浏览:249
app软件为什么会被下架 浏览:981
从内存到硬盘的命令是 浏览:52
程序员的爸爸们的发型 浏览:123
魔兽世界伤害压缩是怎么压的 浏览:976
压缩机型号hp 浏览:959
配音虚弱的程序员 浏览:61
8岁小学生程序员编程 浏览:256