㈠ 遗传算法--GA
遗传算法(GA)属于 人工智能启发式算法 ,启发式算法的目标就是 寻找原始问题的最优解 ,该算法的定义为
人类通过直观常识和生活经验,设计出一种以搜索最优解为目的,通过仿真大自然规律的算法,该算法在可以在接受的花销(计算时间和存储空间)范围内找到问题实例的一个可行解,且该可行解和真实最优解的误差一般不可以被估计
当下主要有的启发式算法包括 遗传算法、退火法,蚁群算法、人工神经网络等 ,这篇文章主要介绍遗传算法
遗传算法的基本原理是模拟达尔文进化论 "物竞天择,适者生存" 的自然法则,其核心思想为
(1)将原始问题的参数,抽象为基因编码
(2)将原始问题的可行解,抽象为基因排列的染色体组合
(3)将原始问题的解集规模,抽象为一定数量染色体组成的种群
(4)寻找可行解的过程,抽象为种群的进化过程(染色体选择、交叉、变异等)
(5)比较可行解的优劣,抽象为量化比较不同种群对当前环境的适应程度
(6)逼近最优解的过程,抽象为淘汰适应度差的种群,保留适应度高的种群进行下一次进化
(7)问题的最优解,抽象为经过多次进化后,最终生存下来的精英种群
理论上,通过有限次种群进化,生存下来的种群都是 精英染色体 ,是最适合当前环境条件的种群,也就可以无限逼近原始问题的最优解
相关生物学术语:
为了大家更好了解遗传算法,在此之前先简单介绍一下相关生物学术语,大家了解一下即可。
基因型(genotype):性状染色体的内部表现;
表现型(phenotype):染色体决定的性状的外部表现,或者说,根据基因型形成的个体的外部表现;
进化(evolution):种群逐渐适应生存环境,品质不断得到改良。生物的进化是以种群的形式进行的。
适应度(fitness):度量某个物种对于生存环境的适应程度。
选择(selection):以一定的概率从种群中选择若干个个体。一般,选择过程是一种基于适应度的优胜劣汰的过程。
复制(reproction):细胞分裂时,遗传物质DNA通过复制而转移到新产生的细胞中,新细胞就继承了旧细胞的基因。
交叉(crossover):两个染色体的某一相同位置处DNA被切断,前后两串分别交叉组合形成两个新的染色体。也称基因重组或杂交;
变异(mutation):复制时可能(很小的概率)产生某些复制差错,变异产生新的染色体,表现出新的性状。
编码(coding):DNA中遗传信息在一个长链上按一定的模式排列。遗传编码可看作从表现型到基因型的映射。
解码(decoding):基因型到表现型的映射。
个体(indivial):指染色体带有特征的实体;
种群(population):个体的集合,该集合内个体数称为种群
大体实现过程
遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。 遗传算法的实现过程实际上就像自然界的进化过程那样。
基本遗传算法概述
1.[开始]生成n个染色体的随机群体(适合该问题的解决方案)
2.[适应度]评估群体中每个染色体x的适应度f(x)
3.[新种群]通过重复以下来创建新种群直到新种群完成的步骤
3.1 [选择]根据种群的适合度选择两个亲本染色体(更好的适应性,更大的选择机会)
3.2 [交叉]以交叉概率跨越父母形成新的后代(儿童) )。如果没有进行交叉,后代就是父母的确切副本。
3.3 [突变]突变概率突变每个基因座(染色体中的位置)的新后代。
4.[接受]在新种群中放置新后代[替换]使用新生成的种群进一步运行算法
5.[测试]如果满足结束条件,则停止并返回当前种群中的最佳解
6。[循环]转到步骤2
影响GA的因素
从遗传算法概述可以看出,交叉和变异是遗传算法中最重要的部分。性能主要受这两个因素的影响。在我们解释有关交叉和变异的更多信息之前,我们将给出一些有关染色体的信息。
染色体编码
染色体应该以某种方式包含它所代表的解决方案的信息。最常用的编码方式是二进制字符串。然后染色体看起来像这样:
每个染色体由二进制字符串表示。字符串中的每个位都可以表示解决方案的一些特征。另一种可能性是整个字符串可以表示一个数字 - 这已在基本的GA小程序中使用。当然,还有许多其他的编码方式。编码主要取决于解决的问题。例如,可以直接编码整数或实数,有时对某些排列等进行编码很有用。
染色体交叉
在我们确定了将使用的编码之后,我们可以继续进行交叉操作。 Crossover对来自亲本染色体的选定基因进行操作并产生新的后代。最简单的方法是随机选择一些交叉点,并在此点之前从第一个父项复制所有内容,然后在交叉点之后复制另一个父交叉点之后的所有内容。交叉可以说明如下:( |是交叉点):
还有其他方法可以进行交叉,例如我们可以选择更多的交叉点。交叉可能非常复杂,主要取决于染色体的编码。针对特定问题进行的特定交叉可以改善遗传算法的性能。
4.染色体突变
在执行交叉之后,发生突变。突变旨在防止群体中的所有解决方案落入解决问题的局部最优中。突变操作随机改变由交叉引起的后代。在二进制编码的情况下,我们可以将一些随机选择的位从1切换到0或从0切换到1.突变可以如下所示:
突变(以及交叉)技术主要取决于染色体的编码。例如,当我们编码排列时,可以将突变作为两个基因的交换来进行。
GA的参数
1.交叉和突变概率
GA有两个基本参数 - 交叉概率和变异概率。
交叉概率 :交叉的频率。如果没有交叉,后代就是父母的精确副本。如果存在交叉,则后代由父母染色体的部分组成。如果交叉概率为100%,那么所有后代都是由交叉产生的。如果它是0%,那么全新一代都是从旧种群的染色体的精确拷贝制成的(但这并不意味着新一代是相同的!)。交叉是希望新染色体将包含旧染色体的良好部分,因此新染色体将更好。但是,将旧人口的一部分留给下一代是好的。
突变概率 :染色体部分突变的频率。如果没有突变,则在交叉(或直接复制)后立即生成后代而不进行任何更改。如果进行突变,则改变染色体的一个或多个部分。如果突变概率为100%,则整个染色体发生变化,如果是0%,则没有变化。突变通常会阻止GA陷入局部极端。突变不应该经常发生,因为GA实际上会改变为随机搜索。
2.其他参数
种群规模 :种群中有多少染色体(一代)。如果染色体太少,GA几乎没有可能进行交叉,只探索了一小部分搜索空间。另一方面,如果染色体太多,GA会减慢。研究表明,经过一定的限制(主要取决于编码和问题),使用非常大的种群是没有用的,因为它不能比中等规模的种群更快地解决问题。
3 选择
正如您从GA概述中已经知道的那样,从群体中选择染色体作为交叉的父母。问题是如何选择这些染色体。根据达尔文的进化论,最好的进化能够创造出新的后代。选择最佳染色体的方法有很多种。例如轮盘赌选择,Boltzman选择,锦标赛选择,等级选择,稳态选择和其他一些选择。
1.轮盘赌选择
父母根据他们的健康状况选择。染色体越好,它们被选择的机会就越多。想象一下轮盘赌轮,人口中的所有染色体都放在那里。轮盘中截面的大小与每条染色体的适应度函数的值成比例 - 值越大,截面越大。有关示例,请参见下图。
轮盘赌中放入一块大理石,并选择停止的染色体。显然,具有较大适应值的染色体将被选择更多次。
该过程可以通过以下算法来描述。
[Sum]计算总体中所有染色体拟合度的总和 - 总和S.
[Select]从区间(0,S)-r生成随机数。
[循环]遍历总体并从0 - 总和中求和。当总和s大于r时,停止并返回您所在的染色体。当然,对于每个群体,步骤1仅执行一次。
2.排名选择
当健身值之间存在很大差异时,先前的选择类型会出现问题。例如,如果最佳染色体适应度是所有拟合度总和的90%,那么其他染色体将很少被选择的机会。等级选择首先对群体进行排序,然后每个染色体接收由该等级确定的适合度值。最差的将是健身1,第二个最差的2等等,最好的将具有适应度N(人口中的染色体数量)。您可以在下面的图片中看到,在更改适应性与排名确定的数字后情况如何变化。
排名前的情况(适合度图)
排名后的情况(订单号图)
现在所有染色体都有机会被选中。然而,这种方法会导致收敛速度变慢,因为最好的染色体与其他染色体的差别不大。
3.稳态选择
这不是选择父母的特定方法。这种选择新种群的主要思想是染色体的很大一部分可以存活到下一代。稳态选择GA以下列方式工作。在每一代中,选择一些好的(具有更高适应性)染色体来创建新的后代。然后去除一些不好的(具有较低适合度)染色体并将新的后代放置在它们的位置。其余人口幸存下来。
4.精英
精英主义的想法已经被引入。当通过交叉和变异创建新的种群时,我们有很大的机会,我们将失去最好的染色体。精英主义是首先将最佳染色体(或少数最佳染色体)复制到新种群的方法的名称。其余人口以上述方式构建。精英主义可以迅速提高GA的性能,因为它可以防止丢失最佳找到的解决方案。
交叉(Crossover)和突变 (Mutation)
交叉和变异是GA的两个基本运算符。 GA的表现非常依赖于它们。运算符的类型和实现取决于编码以及问题。有多种方法可以执行交叉和变异。在本章中,我们将简要介绍一些如何执行多个编码的示例和建议。
1.二进制编码
交叉
单点交叉 - 选择一个交叉点,从第一个父项复制从染色体开始到交叉点的二进制字符串,其余从另一个父项复制
选择两点交叉 - 两个交叉点,从第一个父节点复制从染色体开始到第一个交叉点的二进制字符串,从第一个父节点复制从第一个交叉点到第二个交叉点的部分,其余的是再次从第一个父级复制
均匀交叉 - 从第一个父项或第二个父项中随机复制位
算术交叉 - 执行一些算术运算以产生新的后代
突变
位反转 - 选择的位被反转
2.置换编码
交叉
单点交叉 - 选择一个交叉点,将排列从第一个父项复制到交叉点,然后扫描另一个父项,如果该数字还没有在后代中,则添加它注意:还有更多方法如何在交叉点之后产生休息
(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)
变异
顺序更改 - 选择并交换两个数字
(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)
3.值编码
交叉
可以使用来自二进制编码的所有交叉
变异
添加一个小数字(用于实数值编码) - 将一个小数字添加到(或减去)所选值
(1.29 5.68 2.86 4.11 5.55)=>(1.29 5.68 2.73 4.22 5.55)
4.树编码
交叉
树交叉 - 在父母双方中选择一个交叉点,父母在该点被分割,交换点下面的部分被交换以产生新的后代
变异
更改运算符,数字 - 选定节点已更改
补充:
疑惑点:
初始种群是啥:
利用二进制(一般)表示最终解
例如:需要求解z=x^2+y^2的最大值,x={1,5,3,8},y={5,4,0,6}
用六位二进制数表示由x,y组成的解,例如:001100 表示x=1,y=4
001100 称为一条基因序列,表示的是该问题的一种解决 方案
种群是包含多个基因序列(解决方案/个体)的集合
适应度函数是啥,有什么作用:
适应度函数可以理解成“ 游戏 规则”,如果问题较为复杂,需要自定义适应度函数,说明如何区分优秀与不优秀的个体; 如果问题比较简单,例如上述求最大值的问题,则直接用此函数式作为适应度函数即可。作用:评定个体的优劣程度,从而决定其遗传机会的大小。
怎么选择:
定义“适者生存不适者淘汰”的规则,例如:定义适应度高的被选择的概率更大
怎么交叉:
利用循环,遍历种群中的每个个体,挑选另一个体进行交叉。例如,通过遍历为基因序列A挑选出B配对,则取A的前半部分,B的后半部分,组合成新的个体(基因序列)C
如何变异:
随机挑选基因序列上的某一位置,进行0-1互换
建议 GA的参数
如果您决定实施遗传算法,本章应该为您提供一些基本建议。这些建议非常笼统。您可能希望尝试使用自己的GA来解决特定问题,因为没有一般理论可以帮助您针对任何问题调整GA参数。
建议通常是对GA的经验研究的结果,这些研究通常仅在二进制编码上进行。
交叉率
交叉率一般应高,约为80%-95%。 (但是有些结果表明,对于某些问题,交叉率约为60%是最好的。)
突变率
另一方面,突变率应该非常低。最佳利率似乎约为0.5%-1%。
人口规模
可能令人惊讶的是,非常大的人口规模通常不会改善GA的性能(从找到解决方案的速度的意义上说)。良好的人口规模约为20-30,但有时大小为50-100是最好的。一些研究还表明,最佳种群规模取决于编码字符串(染色体)的大小。这意味着如果你有32位染色体,那么人口应该高于16位染色体。
选择
可以使用基本的轮盘赌选择,但有时排名选择可以更好。查看有关选择优缺点的章节。还有一些更复杂的方法可以在GA运行期间更改选择参数。基本上,这些表现类似于模拟退火。如果您不使用其他方法来保存最佳找到的解决方案,则应确保使用精英主义。您也可以尝试稳态选择。
编码
编码取决于问题以及问题实例的大小。查看有关编码的章节以获取一些建议或查看其他资源。
交叉和变异
运算符取决于所选的编码和问题。查看有关操作员的章节以获取一些建议。您还可以查看其他网站。
搜索空间
如果我们正在解决问题,我们通常会寻找一些最好的解决方案。所有可行解决方案的空间(所需解决方案所在的解决方案集)称为搜索空间(也称为状态空间)。搜索空间中的每个点代表一种可能的解决方案。每个可能的解决方案可以通过其对问题的值(或适应度)进行“标记”。通过GA,我们在众多可能的解决方案中寻找最佳解决方案 - 以搜索空间中的一个点为代表。然后寻找解决方案等于在搜索空间中寻找一些极值(最小值或最大值)。有时可以很好地定义搜索空间,但通常我们只知道搜索空间中的几个点。在使用遗传算法的过程中,随着进化的进行,寻找解决方案的过程会产生其他点(可能的解决方案)。
问题是搜索可能非常复杂。人们可能不知道在哪里寻找解决方案或从哪里开始。有许多方法可用于寻找合适的解决方案,但这些方法不一定能提供最佳解决方案。这些方法中的一些是爬山,禁忌搜索,模拟退火和遗传算法。通过这些方法找到的解决方案通常被认为是很好的解决方案,因为通常不可能证明最佳方案。
NP-hard Problems
NP问题是一类无法用“传统”方式解决的问题。我们可以快速应用许多任务(多项式)算法。还存在一些无法通过算法解决的问题。有很多重要问题很难找到解决方案,但是一旦有了解决方案,就很容易检查解决方案。这一事实导致了NP完全问题。 NP代表非确定性多项式,它意味着可以“猜测”解决方案(通过一些非确定性算法),然后检查它。如果我们有一台猜测机器,我们或许可以在合理的时间内找到解决方案。为简单起见,研究NP完全问题仅限于答案可以是或否的问题。由于存在输出复杂的任务,因此引入了一类称为NP难问题的问题。这个类并不像NP完全问题那样受限。 NP问题的一个特征是,可以使用一个简单的算法,可能是第一眼看到的,可用于找到可用的解决方案。但是这种方法通常提供了许多可能的解决方案 - 只是尝试所有可能的解决方案是非常缓慢的过程(例如O(2 ^ n))。对于这些类型问题的更大的实例,这种方法根本不可用。今天没有人知道是否存在一些更快的算法来提供NP问题的确切答案。对于研究人员来说,发现这样的算法仍然是一项重大任务(也许你!:-))。今天许多人认为这种算法不存在,因此他们正在寻找替代方法。替代方法的一个例子是遗传算法。 NP问题的例子是可满足性问题,旅行商问题或背包问题。可以获得NP问题汇编。
参考:
https://www.jianshu.com/p/ae5157c26af9
https://www.jianshu.com/p/b36b520bd187
㈡ 遗传算法中常用的适应度函数是什么呢
1.物竞――适应度函数(fitness function)
自然界生物竞争过程往往包含两个方面:生物相互间的搏斗与及生物与客观环境的搏斗过程。但在我们这个实例里面,你可以想象到,袋鼠相互之间是非常友好的,它们并不需要互相搏斗以争取生存的权利。它们的生死存亡更多是取决于你的判断。因为你要衡量哪只袋鼠该杀,哪只袋鼠不该杀,所以你必须制定一个衡量的标准。而对于这个问题,这个衡量的标准比较容易制定:袋鼠所在的海拔高度。(因为你单纯地希望袋鼠爬得越高越好。)所以我们直接用袋鼠的海拔高度作为它们的适应性评分。即适应度函数直接返回函数值就行了。
引自:网页链接
㈢ 遗传算法的基本原理
遗传算法本质上是对染色体模式所进行的一系列运算,即通过选择算子将当前种群中的优良模式遗传到下一代种群中,利用交叉算子进行模式重组,利用变异算子进行模式突变。
㈣ 遗传算法
根据问题的目标函数构造一个适值函数,对一个由多个解(每个解对应一个染色体)构成的种群进行评估、遗传、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。
1,产生一个初始种群
2,根据问题的目标函数构造适值函数
3,根据适应值的好坏不断选择和繁殖
4,若干代后得到适应值最好的个体即为最优解
1.种群和种群大小
一般越大越好,但是规模越大运算时间越大,一般设为100~1000
2. 编码方法 (基因表达方法
3. 遗传算子
包括交叉和变异,模拟了每一代中创造后代的繁殖过程。是遗传算法的精髓
交叉:性能在很大程度上取决于交叉运算的性能,交叉率Pc:各代中交叉产生的后与代数与种群中的个体数的比。Pc越高,解空间就越大,越耗时/
变异:Pm:种群中变异基因数在总基因数中的百分比。它控制着新基因导入种群的比例。太低,一些有用的基因就难以进入选择;太高,后代就可能失去从双亲继承下来的良好特性,也就失去了从过去中搜索的能力。
4.选择策略
适者生存,优胜劣汰
5.停止准则
最大迭代数
初始种群的产生:随机产生,具体依赖于编码方法
编码方法 :二进制编码法、浮点编码法、符号编码法。顺序编码,实数编码,整数编码。
适值函数 :根据目标函数设计
遗传运算 : 交叉 :单切点交叉,双切点交叉,均匀交叉,算术交叉
变异 :基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。
均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)
边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。
非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。
高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P**2的正态分布的一个随机数来替换原有的基因值。
选择策略 :1.轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。
2.随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。
3.最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。
4.无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下:
(1) 计算群体中每个个体在下一代群体中的生存期望数目N。
(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未 被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。
(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。
5.确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:
(1) 计算群体中各个个体在下一代群体中的期望生存数目N。
(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。
(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。
6.无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。
7.均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。
8.最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。
9.随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。
10.排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。
之前在网上看到的一个比方,觉得很有趣:
{
既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰。所以求最大值的过程就转化成一个“袋鼠跳”的过程。
下面介绍介绍“袋鼠跳”的几种方式。
爬山算法:一只袋鼠朝着比现在高的地方跳去。它找到了不远处的最高的山峰。但是这座山不一定是最高峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。
模拟退火:袋鼠喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高峰跳去。这就是模拟退火算法。
遗传算法:有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠。于是,不断有袋鼠死于海拔较低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有机会生儿育女。就这样经过许多年,这些袋鼠们竟然都不自觉地聚拢到了一个个的山峰上,可是在所有的袋鼠中,只有聚拢到珠穆朗玛峰的袋鼠被带回了美丽的澳洲。
}
(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)
遗传算法并不保证你能获得问题的最优解,但是使用遗传算法的最大优点在于你不必去了解和操心如何去“找”最优解。(你不必去指导袋鼠向那边跳,跳多远。)而只要简单的“否定”一些表现不好的个体就行了。(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)
改进与变形
编码方法:
㈤ 遗传算法中每个个体的适应度值怎么算啊,怎么用matlab实现啊
适应度为所求问题g(x)的函数f(x),即为函数的函数f(g(x)),一般直接用所求问题的值作为个体的适应度值,即f(x)=1,比如求g(x)=x^2-8的最小值,适应度函数就是g(x)
㈥ 遗传算法适应度问题
由于遗传策略的不同,使得新一代个体的最大适应度不一定比上一代个体的最大适应度大,这也就出现了采用“精度保留策略”的遗传算法,也就保证了所述问题中的1;最大适应度对应的个体直接保留,进入下一代进行交叉遗传,这更符合实际情况,只能说明它与最初提出的标准遗传算法有操作步骤上的不同,并不能说明它与遗传算法的思想相矛盾。
㈦ 遗传算法中的适应度函数是什么
适应度函数的选取直接影响到遗传算法的收敛速度以及能否找到最优解,因为遗传算法在进化搜索中基本不利用外部信息,仅以适应度函数为依据,利用种群每个个体的适应度来进行搜索。
因为适应度函数的复杂度是遗传算法复杂度的主要组成部分,所以适应度函数的设计应尽可能简单,使计算的时间复杂度最小。
遗传算法评价一个解的好坏不是取决于它的解的结构,而是取决于该解的适应度值。这正体现了遗传算法“优胜劣汰”的特点。遗传算法不需要适应度函数满足连续可微等条件,唯一要求是针对输入可计算出能加以比较的非负结果。
(7)在遗传算法中将所有妨碍适应度扩展阅读
在遗传算法中,适应度是描述个体性能的主要指标。根据适应度的大小,对个体进行优胜劣汰。适应度是驱动遗传算法的动力。
从生物学角度讲,适应度相当于“生存竞争、适者生存”的生物生存能力,在遗传过程中具有重要意义。将优化问题的目标函数与个体的适应度建立映射关系,即可在群体进化过程中实现对优化问题目标函数的寻优。
㈧ 遗传算法中 适应度 是怎么求出来的
这个要看问题自己定义了,比如寻路问题中可以定义为路径长度,寻找较优解的问题中直接以解的优劣作为适应度。
㈨ 遗传算法
最近开发了一个模型辨识的软件,发现在计算速度方面需要进行优化,于是查找优化相关的算法,这两天在网上搜了搜关于遗传算法相关的资料,记录一下自己对遗传算法的理解。
遗传算法通过模拟自然界生物种群进化的过程,通过选择、交叉、变异等机制,在某个范围的解空间内寻找一个最优解。遗传算法中通过适应度函数(可以看做目标函数的变形)来评价一个个体(解)与最优解的近似程度,设计适应度函数一定意义上与问题本身的目标函数线性相关。
遗传算法的组成:
1.编码。把解空间内的元素用一定的编码方式表示(常见为二进制数)。
2.初始化群体。选定种群大小(每次迭代过程中需要计算、评价的解的个数),随机填充
3.适应度。根据适应度函数对种群进行排序。
4.遗传算子。即通过选择、交叉、变异产生下一代种群。
5.根据终止判定法则判断是否已找到最优解或者继续循环。
这里有几个问题:
遗传算法的优点在于无需对解空间内的每一个解进行计算和比较,一定程度上优化了计算速度,但是收敛速度具有随机性。这里我对遗传算法还有一些疑问:假如解空间的规模不是很大,例如几百,那么如果选取的种群太大,可能进行一两次迭代就几乎遍历了解空间内的所有元素,与顺序遍历没什么差别;如果选取的种群太小,进行交叉、变异操作时,由于基数小,会不会导致算法停滞?(子代与父代完全相同)
选择(以轮盘赌选择方法为例)是不是相当于对父代进行种群大小次数的选择,产生子代,那么子代中适应度较高的解会重复出现,适应度越高偿付概率越大。重复项需要剔除,然后从解空间内随机填充吗?还是说保留重复项?(同理交叉、变异种出现的重复项如何处理?)
另外,该如何终止判定法则该如何确定?