㈠ 割圆术这个图是什么意思
一般指割圆术
三国时代数学家刘徽的割圆术是中国古代数学中“一个十分精彩的算法”。在此之前,圆周率采用“径一周三”的实验数据。东汉科学家张衡采用和。刘徽认为过大。。东汉天文学家王蕃采用。这些圆周率都是实验值,都只准确到二位数字。刘徽是中国数学史上最先创造了一个从数学上计算圆周率到任意精确度的迭代程序。他自己通过分割圆为192边形,计算出圆周率在3.14 与 3.142704之间,取其近似,并以表示。这个数值准确到三位数字,比前人的圆周率数值都准,但他自己次承认这个数值偏小。后来刘徽发明一种快捷算法,可以只用96边形得到和1536边形同等的精确度,从而得令他自己满意的。 刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,求得更精确的圆周率。南北朝时期着名数学家祖冲之用刘徽割圆术计算11次,分割圆为12288边形,得圆周率=3.1415929,成为此后千年世界上最准确的圆周率。 刘徽在圆周率领域的贡献,不仅在于求得和,更重要的在于他创造了一世界数学史上最精彩的割圆术:阿基米德割圆术和刘徽割圆术一样用双向迫近,因而同样严谨完备,但远不如刘徽简洁;阿基米德用双归谬法推证圆面积,不如刘徽用极限论先进;托勒密割圆术和阿尔·卡西割圆术只是单向迫近,不如刘徽严谨;赵友欣割圆术和日本关孝和割圆术从正方开割,属于刘徽割圆术的变化,而且也是单向迫近。刘徽割圆术虽然不是世界最早,却是数学史上最严谨完备简洁的割圆
㈡ 刘徽的割圆术具体内容是什么
刘徽从圆内接正六边形开始,使边数逐次加倍,作出正十二边形、正二十四边形…,并依次计算出它们的面积,这些结果将逐渐逼近圆面积,这样就可以求出圆周率的值,这种方法被称为刘徽割圆术。用刘徽的话来说,“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思就是说把圆周分得越细,即圆内接正多边形的边数越多,用它的面积去代替圆面积,就丢失的越少。不断地分割下去,让边数不断地增多,那么边数无限多的正多边形的面积就与圆面积相等了。
㈢ 刘徽创造的割圆术计算方法是怎样的
刘徽创造的割圆术计算方法,只用圆内接多边形面积,而无需外切形面积,从而简化了计算程序。同时,为解决圆周率问题,刘徽运用了初步的极限概念和直曲转化思想,这在古代也是非常难能可贵的。
在刘徽之后,南北朝时期杰出数学家祖冲之,把圆周率推算到更加精确的程度,取得了极其光辉的成就。
㈣ 小议“割圆术”
小议“割圆术”
---圆周率的计算历程
“割圆术”是什么?“割圆术”并不是把圆割开,而是为了计算 圆周率 ,不断倍增圆内接正多边形的边数求出圆周率的方法。由3世纪中期,魏晋时期的数学家 刘徽 首创。刘徽用这种算法得到圆周率约是3.1416,这个数值在当时已经非常领先。直至两百年后数学大拿祖冲之横空出世,把圆周率计算到了3.1415926<π<3.1415927之间,这个结果领先西方国家1000多年,不得不说中国古代的数学家太厉害了!祖冲之的计算方法“缀术”很不幸已失传,但我国现代着名数学家华罗庚认为“缀术”仍然是割圆术。可见割圆术的方法非同一般。
那“割圆术”是怎样计算圆周率的呢?割圆术的关键在于计算所需要的正多边形的周长,让其作为圆的周长,除以直径便可以得到圆周率。另外解决这个问题我们应该弄明白割圆术中的倍增,也就是成倍数增加。比如开始给定的是正四边形,那么下一次就要用到正八边形,下一次就是正十六边形,以此类推。
下面是割圆术计算圆周长的部分推导过程:涉及勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。如果两条直角边用a和b表示,斜边用c表示,那么勾股定理可以用符号语言表达为:
首先做一个半径是1的圆,如下图:
而我们不难得出,当N=6时,BD长度为1,所以代入上面的公式,我们便可求出正12边形的边长,用正12边形的边长我们就可求出正24边形的边长,依次倍增即可。然后用求得的正多边形的周长,作为圆的周长,除以直径便可以得到圆周率的近似值。当然边长数越大这个近似值也就越精确。
其实,我们也可以用割圆术,计算正多边形的面积,用正多边形的面积逼近圆的面积,也可得圆周率的近似值。
现代社会,已经有很多方法求导圆周率,大数学家欧拉就用级数的方法计算,似乎“割圆术”已经过时了。但义务教育阶段仍然会出现,小学6年级推导圆的面积时,割圆术作为其中一种方法出现,可能是因为这种逼近思想恰巧是微积分的萌芽吧!
㈤ 刘徽割圆术的完整证明(带图)
割圆术的主要内容是:一、在圆内作内接正六边形,每边边长均等于半径;再作正十二边形,从勾股定理出发,求得正十二边形的边长,如此类推,从内接n边形的边长可推知内接2n边形的边长。二、从圆内接正n边形每边边长,可求得内接2n边形的面积。如图正十二边形的一部分(四边形OADB)的面积,等于正六边形边长AB乘以半径OD的一半,这样,即使边数极多的内接正多边形面积也可以一步步求解。三、圆的面积介于两个可求得的值之间。 依据极限观念,刘徽指出:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”。将这种极限思想和上述不等式结合起来,通过不断增加多边形边数,就可以从不足近似值和过剩近似值两个方面逼近圆周率的真值。这两个数据的精确度是当时世界上前所未有的。 与刘徽类似的是,古希腊的阿基米德也用正多边形法去求圆周率。但是阿基米德是用归谬法证得这一结果的,避开了极限概念,而刘徽却大胆地应用了以直代曲、无限趋近的思想方法;且阿基米德的方法需另外计算圆外切正多边形面积,刘徽的方法则只需求内接正多边形面积。与阿基米德比,刘徽的割圆术可谓事半功倍。
㈥ 割圆法究竟是怎么割的
先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。然后对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。
逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。
(6)割圆术的算法扩展阅读:
3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法。
刘徽个人成就:割圆术与圆周率, 他在《九章算术 圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。
他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。
㈦ 刘徽的“割圆术”是什么
割圆术(cyclotomic method)
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
“圜,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。
为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上着名的“割圆术”。
http://ke..com/view/31917.htm
㈧ 祖冲之是怎样计算出圆周率的割圆术具体是怎么回事
。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。
祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
㈨ 割圆术的基本算法
根据刘徽的记载,在刘徽之前,人们求证圆面积公式时,是用圆内接正十二边形的面积来代替圆面积。应用出入相补原理,将圆内接正十二边形拼补成一个长方形,借用长方形的面积公式来论证《九章算术》的圆面积公式。刘徽指出,这个长方形是以圆内接正六边形周长的一半作为长,以圆半径作为高的长方形,它的面积是圆内接正十二边形的面积。这种论证“合径率一而弧周率三也”,即后来常说的“周三径一”,当然不严密。他认为,圆内接正多边形的面积与圆面积都有一个差,用有限次数的分割、拼补,是无法证明《九章算术》的圆面积公式的。因此刘徽大胆地将极限思想和无穷小分割引入了数学证明。他从圆内接正六边形开始割圆,“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣。”也就是说将圆内接正多边形的边数不断加倍,则它们与圆面积的差就越来越小,而当边数不能再加的时候,圆内接正多边形的面积的极限就是圆面积。刘徽考察了内接多边形的面积,也就是它的“幂”,同时提出了“差幂”的概念。“差幂” 是后一次与前一次割圆的差值,可以用图中阴影部分三角形的面积来表示。同时,它与两个小黄三角形的面积和相等。刘徽指出,在用圆内接正多边形逼近圆面积的过程中,圆半径在正多边形与圆之间有一段余径。以余径乘正多边形的边长,即2倍的“差幂”,加到这个正多边形上,其面积则大于圆面积。这是圆面积的一个上界序列。刘徽认为,当圆内接正多边形与圆是合体的极限状态时,“则表无余径。表无余径,则幂不外出矣。”就是说,余径消失了,余径的长方形也就不存在了。因而,圆面积的这个上界序列的极限也是圆面积。于是内外两侧序列都趋向于同一数值,即,圆面积。
利用圆内接或外切正多边形,求圆周率近似值的方法,其原理是当正多边形的边数增加时,它的边长和逐渐逼近圆周。早在公元前5世纪,古希腊学者安蒂丰为了研究化圆为方问题就设计一种方法:先作一个圆内接正四边形,以此为基础作一个圆内接正八边形,再逐次加倍其边数,得到正16边形、正32边形等等,直至正多边形的边长小到恰与它们各自所在的圆周部分重合,他认为就可以完成化圆为方问题。到公元前3世纪,古希腊科学家阿基米德在《论球和圆柱》一书中利用穷竭法建立起这样的命题:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。阿基米德又在《圆的度量》一书中利用正多边形割圆的方法得到圆周率的值小于三又七分之一而大于三又七十分之十 ,还说圆面积与外切正方形面积之比为11:14,即取圆周率等于22/7。公元263年,中国数学家刘徽在《九章算术注》中提出“割圆”之说,他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为3.14或157/50,后人称之为徽率。书中还记载了圆周率更精确的值3927/1250(等于3.1416)。刘徽断言“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。其思想与古希腊穷竭法不谋而合。割圆术在圆周率计算史上曾长期使用。1610年德国数学家柯伦用2^62边形将圆周率计算到小数点后35位。1630年格林贝尔格利用改进的方法计算到小数点后39位,成为割圆术计算圆周率的最好结果。分析方法发明后逐渐取代了割圆术,但割圆术作为计算圆周率最早的科学方法一直为人们所称道。
π=lim(n→∞)1/2*sin(360/n)*n