① Hive入门概述
1.1 什么是Hive
Hive:由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。本质是:将HQL转化成MapRece程序
Hive处理的数据存储在HDFS
Hive分析数据底层的实现是MapRece
执行程序运行在Yarn上
1.2 Hive的优缺点
1.2.1 优点
操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
避免了去写MapRece,减少开发人员的学习成本。
Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
1.2.2 缺点
1.Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长
2.Hive的效率比较低
(1)Hive自动生成的MapRece作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗
1.3 Hive架构原理
1.用户接口:Client
CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)
2.元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL替代derby存储Metastore
3.Hadoop
使用HDFS进行存储,使用MapRece进行计算。
4.驱动器:Driver
(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):对逻辑执行计划进行优化。
(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapRece,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
1.4 Hive和数据库比较
由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。
1.4.1 查询语言
由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
1.4.2 数据存储位置
Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
1.4.3 数据更新
由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET修改数据。
1.4.4 索引
Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapRece 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
1.4.5 执行
Hive中大多数查询的执行是通过 Hadoop 提供的 MapRece 来实现的。而数据库通常有自己的执行引擎。
1.4.6 执行延迟
Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapRece框架。由于MapRece 本身具有较高的延迟,因此在利用MapRece 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
1.4.7 可扩展性
由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(世界上最大的Hadoop 集群在 Yahoo!,2009年的规模在4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有100台左右。
1.4.8 数据规模
由于Hive建立在集群上并可以利用MapRece进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
② spark thrift server 与 网易 kyuubi thrift server
thrift server可以实现通过jdbc, beeline等工具,实现连接到spark集群,并提交sql查询的机制。
默认情况下,cdh安装的spark没有包含thrift server模块,因此我们需要重新编译spark。
另外,为了不影响cdh自带的spark,而且spark目前都是基于yarn运行的,本身也没有什么独立的服务部署(除了history sever)。
所以,在一个集群中,可以部署安装多个版本的spark。
我们使用源码编译的spark 2.4.0(其中hive的版本是1.2.1)
cdh集成的spark版本和Hive版本如下:
使用jdk1.8
修改spark提供的mvn,使用自行安装的maven 3.8.1
使用make-distribution.sh可以帮助与我们编译之后打包成tgz文件
修改pom.xml文件的配置如下。
最后,执行编译命令如下:
这样打出的包,就含有thrift server的jar包了。
最终打包文件,根目录下。
之后就是解压到其他目录下后即可。
将hive-site.xml的文件连接过来,这样spark就可以读取hive的表了。
为了确保spark提交到yarn上运行,需要配置
cp spark-defaults.conf.template spar-defaults.conf
另外,可以在spark-env.sh中设置环境变量。
HADOOP_CONF_DIR
环境变量,也可以在/etc/profile中设置
启动日志可以查看,注意下端口占用问题,如下。
启动时候,使用beeline工具连接上,主要这里不用使用cdh默认安装hive提供的beeline工具,应为版本太高。
使用编译后spark生成beeline工具
参考beeline使用教程。
https://github.com/apache/incubator-kyuubi
kyuubi是基于thrift sever二次开发,在系能和安全上优于thrift server。
鉴于目前hive的版本是2.1,而最新的kyuubi的hive是2.3,所以采用前天版本的kyuubi,采用0.7版本,保证hive的版本小于当前集群中的hive版本。
使用build目录下的dist脚本进行编译和打包。
编译成功后,会在更目录下出现tar.gz的压缩文件,如上图。
之后解压到目录下。
配置bin/kyuubi-env.sh脚本,设置spark路径
执行bin/start-kyuubi.sh命令即可。
访问的方式同样采用beelin,注意使用上面章节的beeline工具。
访问后,可以通过beeline访问到hive的表(在spark中已经配置了hive-site.xml)
!connect jdbc: hive2://xxxx:10009 即可。
③ 大数据分析应该掌握哪些基础知识
Java基础语法
· 分支结构if/switch
· 循环结构for/while/do while
· 方法声明和调用
· 方法重载
· 数组的使用
· 命令行参数、可变参数
IDEA
· IDEA常用设置、常用快捷键
· 自定义模板
· 关联Tomcat
· Web项目案例实操
面向对象编程
· 封装、继承、多态、构造器、包
· 异常处理机制
· 抽象类、接口、内部类
· 常有基础API、集合List/Set/Map
· 泛型、线程的创建和启动
· 深入集合源码分析、常见数据结构解析
· 线程的安全、同步和通信、IO流体系
· 反射、类的加载机制、网络编程
Java8/9/10/11新特性
· Lambda表达式、方法引用
· 构造器引用、StreamAPI
· jShell(JShell)命令
· 接口的私有方法、Optional加强
· 局部变量的类型推断
· 更简化的编译运行程序等
MySQL
· DML语言、DDL语言、DCL语言
· 分组查询、Join查询、子查询、Union查询、函数
· 流程控制语句、事务的特点、事务的隔离级别等
JDBC
· 使用JDBC完成数据库增删改查操作
· 批处理的操作
· 数据库连接池的原理及应用
· 常见数据库连接池C3P0、DBCP、Druid等
Maven
· Maven环境搭建
· 本地仓库&中央仓库
· 创建Web工程
· 自动部署
· 持续继承
· 持续部署
· VI/VIM编辑器
· 系统管理操作&远程登录
· 常用命令
· 软件包管理&企业真题
Shell编程
· 自定义变量与特殊变量
· 运算符
· 条件判断
· 流程控制
· 系统函数&自定义函数
· 常用工具命令
· 面试真题
Hadoop
· Hadoop生态介绍
· Hadoop运行模式
· 源码编译
· HDFS文件系统底层详解
· DN&NN工作机制
· HDFS的API操作
· MapRece框架原理
· 数据压缩
· Yarn工作机制
· MapRece案例详解
· Hadoop参数调优
· HDFS存储多目录
· 多磁盘数据均衡
· LZO压缩
· Hadoop基准测试
Zookeeper
· Zookeeper数据结果
· 内部原理
· 选举机制
· Stat结构体
· 监听器
· 分布式安装部署
· API操作
· 实战案例
· 面试真题
· 启动停止脚本
HA+新特性
· HDFS-HA集群配置
Hive
· Hive架构原理
· 安装部署
· 远程连接
· 常见命令及基本数据类型
· DML数据操作
· 查询语句
· Join&排序
· 分桶&函数
· 压缩&存储
· 企业级调优
· 实战案例
· 面试真题
Flume
· Flume架构
· Agent内部原理
· 事务
· 安装部署
· 实战案例
· 自定义Source
· 自定义Sink
· Ganglia监控
Kafka
· 消息队列
· Kafka架构
· 集群部署
· 命令行操作
· 工作流程分析
· 分区分配策略
· 数据写入流程
· 存储策略
· 高阶API
· 低级API
· 拦截器
· 监控
· 高可靠性存储
· 数据可靠性和持久性保证
· ISR机制
· Kafka压测
· 机器数量计算
· 分区数计算
· 启动停止脚本
DataX
· 安装
· 原理
· 数据一致性
· 空值处理
· LZO压缩处理
Scala
· Scala基础入门
· 函数式编程
· 数据结构
· 面向对象编程
· 模式匹配
· 高阶函数
· 特质
· 注解&类型参数
· 隐式转换
· 高级类型
· 案例实操
Spark Core
· 安装部署
· RDD概述
· 编程模型
· 持久化&检查点机制
· DAG
· 算子详解
· RDD编程进阶
· 累加器&广播变量
Spark SQL
· SparkSQL
· DataFrame
· DataSet
· 自定义UDF&UDAF函数
Spark Streaming
· SparkStreaming
· 背压机制原理
· Receiver和Direct模式原理
· Window原理及案例实操
· 7x24 不间断运行&性能考量
Spark内核&优化
· 内核源码详解
· 优化详解
Hbase
· Hbase原理及架构
· 数据读写流程
· API使用
· 与Hive和Sqoop集成
· 企业级调优
Presto
· Presto的安装部署
· 使用Presto执行数仓项目的即席查询模块
Ranger2.0
· 权限管理工具Ranger的安装和使用
Azkaban3.0
· 任务调度工具Azkaban3.0的安装部署
· 使用Azkaban进行项目任务调度,实现电话邮件报警
Kylin3.0
· Kylin的安装部署
· Kylin核心思想
· 使用Kylin对接数据源构建模型
Atlas2.0
· 元数据管理工具Atlas的安装部署
Zabbix
· 集群监控工具Zabbix的安装部署
DolphinScheler
· 任务调度工具DolphinScheler的安装部署
· 实现数仓项目任务的自动化调度、配置邮件报警
Superset
· 使用SuperSet对数仓项目的计算结果进行可视化展示
Echarts
· 使用Echarts对数仓项目的计算结果进行可视化展示
Redis
· Redis安装部署
· 五大数据类型
· 总体配置
· 持久化
· 事务
· 发布订阅
· 主从复制
Canal
· 使用Canal实时监控MySQL数据变化采集至实时项目
Flink
· 运行时架构
· 数据源Source
· Window API
· Water Mark
· 状态编程
· CEP复杂事件处理
Flink SQL
· Flink SQL和Table API详细解读
Flink 内核
· Flink内核源码讲解
· 经典面试题讲解
Git&GitHub
· 安装配置
· 本地库搭建
· 基本操作
· 工作流
· 集中式
ClickHouse
· ClickHouse的安装部署
· 读写机制
· 数据类型
· 执行引擎
DataV
· 使用DataV对实时项目需求计算结果进行可视化展示
sugar
· 结合Springboot对接网络sugar实现数据可视化大屏展示
Maxwell
· 使用Maxwell实时监控MySQL数据变化采集至实时项目
ElasticSearch
· ElasticSearch索引基本操作、案例实操
Kibana
· 通过Kibana配置可视化分析
Springboot
· 利用Springboot开发可视化接口程序
④ 我想学习hive,请问安装hive之前,必须安装centos、hadoop、java这些吗
安装需要
java 1.6,java 1.7或更高版本。
Hadoop 2.x或更高, 1.x. Hive 0.13 版本也支持 0.20.x, 0.23.x
Linux,mac,windows操作系统。以下内容适用于linux系统。
安装打包好的hive
需要先到apache下载已打包好的hive镜像,然后解压开该文件
$ tar -xzvf hive-x.y.z.tar.gz
设置hive环境变量
$ cd hive-x.y.z$ export HIVE_HOME={{pwd}}
设置hive运行路径
$ export PATH=$HIVE_HOME/bin:$PATH
编译Hive源码
下载hive源码
此处使用maven编译,需要下载安装maven。
以Hive 0.13版为例
编译hive 0.13源码基于hadoop 0.23或更高版本
$cdhive$mvncleaninstall-Phadoop-2,dist$cdpackaging/target/apache-hive-{version}-SNAPSHOT-bin/apache-hive-{version}-SNAPSHOT-bin$lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
编译hive 基于hadoop 0.20
$cdhive$antcleanpackage$cdbuild/dist#lsLICENSENOTICEREADME.txtRELEASE_NOTES.txtbin/(alltheshellscripts)lib/(requiredjarfiles)conf/(configurationfiles)examples/(sampleinputandqueryfiles)hcatalog/(hcataloginstallation)scripts/(upgradescriptsforhive-metastore)
运行hive
Hive运行依赖于hadoop,在运行hadoop之前必需先配置好hadoopHome。
export HADOOP_HOME=<hadoop-install-dir>
在hdfs上为hive创建\tmp目录和/user/hive/warehouse(akahive.metastore.warehouse.dir) 目录,然后你才可以运行hive。
在运行hive之前设置HiveHome。
$ export HIVE_HOME=<hive-install-dir>
在命令行窗口启动hive
$ $HIVE_HOME/bin/hive
若执行成功,将看到类似内容如图所示
⑤ 如何通俗地理解Hive的工作原理
Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapRece 开发者的开发自定义的 mapper 和 recer 来处理内建的 mapper 和 recer 无法完成的复杂的分析工作。
流程大致步骤为:
1. 用户提交查询等任务给Driver。
2. 编译器获得该用户的任务Plan。
3. 编译器Compiler根据用户任务去MetaStore中获取需要的Hive的元数据信息。
4. 编译器Compiler得到元数据信息,对任务进行编译,先将HiveQL转换为抽象语法树,然后将抽象语法树转换成查询块,将查询块转化为逻辑的查询计划,重写逻辑查询计划,将逻辑计划转化为物理的计划(MapRece), 最后选择最佳的策略。
5. 将最终的计划提交给Driver。
6. Driver将计划Plan转交给ExecutionEngine去执行,获取元数据信息,提交给JobTracker或者SourceManager执行该任务,任务会直接读取HDFS中文件进行相应的操作。
7. 获取执行的结果。
8. 取得并返回执行结果。