A. 小学数学加减法速算方法与技巧
小学学生的加减法运算能力是非常重要的数学能力,运算能力不仅包括理解运算算理,掌握运算方法,还包括在遇到问题时能够找到合理简便的运算途径。
速算不仅能简化计算过程,化繁为简,化难为易,同时又会提高计算效率。
因此在学习过程中,不仅需要掌握计算法则,还需要学会一些运算技巧。
凑整"先计算
在进行加法运算时,若能对算式的各项恰当地分组,会使计算过程大大简化。两个数相加,若能恰好凑成整十、整百、整千、整万…则先计算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"补数";79叫21的"补数",44也叫56的"补数",也就是说两个数互为"补数"。
例题1.计算53+55+47
解:原式=(53+47)+55
=155
计算23+39+61
解:原式=23+(39+61)
=23+100
=123
对于不能直接凑整的,可以把其中一个数进行拆分,再凑整。
例题2.计算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
计算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
计算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
对于没有直接凑整的数的,可以先凑整,最后再减去凑整的数。
例题3.计算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差数列
计算等差连续数(等差数列)的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差连续数
1、等差连续数的个数是奇数时,它们的和等于中间数乘以个数。
例题4.计算1+2+3+4+5+6+7+8+9
解:原式=5×9(中间数是5,共9个数)
=45
计算1+3+5+7+9+11+13
解:原式=7×7(中间数是7,共7个数)
=49
计算2+4+6+8+10
解:原式=6×5(中间数是6,共5个数)
=30
2、等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半。
例题5.计算1+2+3+4+5+6+7+8+9+10
共10个数,个数的一半是5,首数是1,末数是10。
解:原式=(1+10)×5
=11×5
=55
计算1+3+5+7+9+11+13+15
共8个数,个数的一半是4,首数是1,末数是15。
解:原式=(1+15)×4
=16×4
=64
计算2+4+6+8+10+12
共6个数,个数的一半是3,首数是2,末数是12。
解:原式=(2+12)×3
=14×3
=42
基准数法
先观察各个加数的大小接近什么数字,再把每个加数先按接近的数字相加,然后再把少算的加上,把多算的减去。
例题6.计算23+22+24+18+19+17
通过观察发现所有的加项比较接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
计算103+102+101+99+98
所有加项比较接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
减法中的巧算
1、把几个互为"补数"的减数先加起来,再从被减数中减去。
例题7.计算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
计算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先减去那些与被减数有相同尾数的减数。
例题8.计算4622-(622+149)
解:原式=4000-149
=3851
3、利用"补数"先凑整,再运算(注意把多加的数再减去,把多减的数再加上)。
例题9.计算505-397
解:原式=500+5-400+3(把多减的 3再加上)
=108
计算523-289
解:原式=523-300+11(把多减的11再加上)
=223+11
=234
计算358+997
解:原式=358+1000-3(把多加的3再减去)
=1355
加减混合式的运算
1、去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是"+"号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是"-"号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,"+"变"-","-"变"+"。
例题10.计算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
计算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、带符号"搬家"
例题11.计算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每个数前面的运算符号是这个数的符号,如+47,-145,+53。而545前面虽然没有符号,应看作是+545。
3、两个数相同而符号相反的数可以直接"抵消"掉
例题12.计算18+2-18+4
解:原式=18-18+2+4
=6
B. 小学加减法速算方法与技巧
小学加减法速算方法与技巧如下:个位数是“1” 速算口诀:头乘头,头加头,尾是1(头加头如果超过10要进位)。十位数是“1” 速算口诀:头是1,尾加为,尾乘尾(超过10要进位)。
两位数相减,个位数相同,直接减成0。两位数相减,减数比被减数个位数大,直接相减。两位数相减,减数比被减数个位数小,将被减数拆分成和减数个位相同。
转换成两个简单乘法和一个加法。具体方法是:乘数十几用字母和数学方法表示出来就是10+a,这里的a是一个一位数,另一个乘数用b表示、也是一个一位数
则算式就是(10+a)*b,这个代数式采用乘法分配律展开就是10*b+a*b,这样算式就是一个10的整数倍加上两个一位数的乘积了,完全可以口算得出结果。
C. 一年级数学口算速算技巧
一年级数学口算速算技巧如下:
一、大数读出来,小数伸手数。
当孩子一开始遇到加减法的时候,基本都会习惯沿用幼儿园掰手指计算的方法,但是上了小学以后就会接触到两位数的加减法了,那两个数字都用手指就会不够用了,这个时候可以较大的数字读出来,然后较小的数字用手指代替。
三、将能凑十的数字组合记牢固。
很多孩子在一开始计算加减法的时候,由于基础打得不好,所以加减法题目稍微难一点就容易慌神做错。那家长可以帮孩子把十以内的加法规律编成能让孩子记忆深刻的儿歌。
比如下面这首凑十歌就不错:一九一九好朋友,二八二八手拉手,三七三七真亲密,四六六一起走,五五凑成一双手。
D. 两位数加减法口算技巧是什么
一、加法部分:“十位加十位,个位加个位”与“先加十位,再加个位”。
1、十位加十位,个位加个位:指的是把两位数字中的十位和个位拆开来进行计算。
2、先加十位,再加个位:是指将算式中的其中一个拆分开来,一般是拆分为“几十”和“几个”。
二、减法部分:“十位减十位,个位减个位”以及“先减十位,再减个位。”
1、十位减十位,个位减个位:是指把算式中的两个数字进行拆分,再按照口诀所说的顺序进行运算。
2、先减十位,再减个位:是指将减数中的数拆分成“几十”与“几个”的组合,再进行计算。
(4)一年级数学速算法两位数加减扩展阅读
减法性质
a-b-c=a-(b+c)
1、某数减去或加上一个数,再加上或减去同一个数,得数不变.即a-b+b=a或a+b-b。
2、n个数的和减去一个数,可以从任何一个加数里减去这个数(在能减的情况下),再同其余的加数相加,如(a+b+c)-d=(a-d)+b+c。
3、一个数减去n个数的和,可以从这个数里依次减去和里的每个加数,如a-(b+c+d)=a-b-c-d。
4、一个数减去两个数的差,可以从这个数里减去差里的被减数(在能减的情况下),再加上差里的减数;或者先加上差里的减数,再减去差里的被减数,即a-(b-c)=a-b+c或者a-(b-c)=a+c-b。
E. 口算两位数加减两位数的方法是什么
口算两位数加减两位数的方法是先用两位数加整十数,再加个位数。也可以先用整十数加整十数,个位数加个位数,再把两次所得的和相加。先用整十数减整十数,个位数减个位数,再把所得的数相加。也可以先用两位数减整十数。
口算:一边心算一边口说地运算。口算就是用脑计算,用口头叙述来记忆当时的结果。这种方法用于速算,常练有助于智力的提高。也成为如今的主流的计算方法。也叫“心算”。数学教学方法之一。一种只凭思维及语言活动不借任何工具的计算方法。它能培养学生快速的计算,发展学生的注意、记忆和思维能力。口算熟练后有助于笔算,且便于在日常生活中应用。
F. 两位数加法速算方法
方法
1.两位数加两位数的进位加法:口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9(注:口决中的加几都是说个位上的数)。例:26+38=64
解
:加8要减2,谁减2?26上的6减2。38里十位上的3要进4。(注:后一个两位数上的十位怎么进位,是1我进2,是2我进3,是3我进4,依次类推。那朝什么地方进位呢,进在第一个两位数上十位上。如本次是3我进4,就是第一个两位数里的2+4=6。)这里的26+38=64就是6-2=4写在个位上,是3进4加2就等于6写在十位上。再如42+29=71。就用加9要减1这句口决,2-1=1,把1写在个位上,是2我进3,4+3=7,把7写在十位上即得71。本办法学会了百试百灵,比计算器还快。两位数加两位数不进位加的就直接写得数就行,如25+34=59,个位加个位写在等号后的个位上5+4=9,十位加十位写在十位上即可2+3=5,即59。不必列竖式计算。
方法2.两位数减两位数的退位减法。口决: 口诀:减9要加1,减8要加2,减7要加3,减 6要加4,减 5要加5,减4要加6,减 3要加7,减
2要加8,减
1要加9。(注:口决中的减几都是说减个位上的数)。例:73-46=27,解:减6要加4,谁加4?3加4等于7写在个位上,减数的十位是4我退5,谁退5?7退5,即27。(注:如何退位?减数的十位是1你退2,是2你退3,是3你退4,依次类推,但必须是个位减个位不够减的情况才能这样退,够减就直接个位减个位,十位减十位直接定出得数即可。)
以上两种方法是我利用了一年级教材中的凑十法演变而来的。它们的口决大体一致,只需记住了其中的一种,另一种方法即可融会贯通。
G. 两位数的加减法有哪些
两位数加减法速算方法:
两位数加两位数的进位加法口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9。
两位数减两位数的退位减法口诀:减9要加1,减8要加2,减7要加3,减6要加4,减5要加5,减4要加6,减3要加7,减2要加8,减1要加9。
加法法则:
在加法或者减法中使用“截位法”时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与错位),知道得到选项要求精度的答案为止。在乘法或者除法中使用“截位法”时,为了使所得结果尽可能精确,需要注意截位近似的方向:
一、扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子。
二、扩大(或缩小)被除数,则需扩大(或缩小)除数。如果是求两个乘积的和或者差(即a*b+/-c*d)。
三、扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧。
四、扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
H. 两位数加减法简便方法有几种
1、加法时可将其和为10相关数字先加,例如3与7,2与8,或1、4与5各数字可先加,以便计算。
例一.67+83+28+84=262
(4 + 2+1 +3 =1; 262→1, 1=1。)
思路:个位数7,3,8,4,=22;(左手进二)
十位数6,8,2,8,2,=26;
2、连减法
如:95-28=?先减去与被减数个位数相同部分的数(即个位是被减数的个位,十位是减数的十位),再减去少减去部分的数。过程:先用95-25=70。再用70-3=67即可。
3、先减后加法。
如:76-38=?可以先用整十数70减去减数38,再用这个差加上被减数的个位数。
4、求知识数字位置颠倒的两个两位数的和
口诀:一个数的十位数加上他的个位数乘以11等于和。
例题:
56+65=(5+6)×11=121
13+31= (1+3)×11=44
98+89=(9+8)×11=187
5、 求只是数字位置颠倒两个两位数的差
口诀:一个数的十位数减去他的个位数乘以9。
例题:
98-89=(9-8)×9=9;
82-28 = (8-2)×9=54;
74-47=(7-4)×9=27;
I. 两位数加减法有哪些
两位数加减法速算方法:
两位数加两位数的进位加法口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9。
两位数减两位数的退位减法口诀:减9要加1,减8要加2,减7要加3,减6要加4,减5要加5,减4要加6,减3要加7,减2要加8,减1要加9。
减法公式
1、被减数-减数=差
2、差+减数=被减数
3、被减数-差=减数
减法相关性质
1、反交换率:减法是反交换的,如果a和b是任意两个数字,那么(a-b)=-(b-a)。
2、反结合律:减法是反结合的,当试图重新定义减法时,那么a-b-c=a-(b+c)。
J. 一年级上册数学加减法速算与巧算
给孩子总结一些学习的技巧,也能够有效提高孩子的学习成绩与学习兴趣,对于数学学习也是如此,为了帮助孩子们更好的学习数学我整理了一年级上册数学加减法算法,希望能帮助到您。
加法的神奇速算法
一、加大减差法
1、口诀
前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、例题
1376+98=1474 计算方法:1376+100-2
3586+898=4484 计算方法:3586+1000-102
5768+9897=15665 计算方法:5768+10000-103
二、求只是数字位置颠倒两个两位数的和
1、口诀
一个数的十位数加上它的个位数乘以11等于和
2、例题
47+74=121 计算方法:(4+7)x 11=121
68+86=154 计算方法:(6+8)x 11=154
58+85=143 计算方法:(5+8)x 11=143
三、一目三行加法
1、口诀
提前虚进一,中间弃9,末位弃10
2、例题
365427158
644785963
+742334452
———————
1752547573
方法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3
注意:中间不够9的用分段法,直接相加,并要提前虚进1;中间数字和大于19的,弃19,前边多进1,末位数字和大于19的,弃20,前边多进1
减法的神奇速算法
一、减大加差法
1、例题
321-98=223
计算方法:减100,加2
8135-878=7257
计算方法:减1000,加122
91321-8987= 82334
计算方法:减10000,加1013
2、总结
被减数减去减数的整数,再加上减数与整数的差,等于差。
二、求只是数字位置颠倒两个两位数的差
1、例题
74-47=27
计算方法:(7-4)x9=27
83-38=45
计算方法:(8-3)x9=45
92-29=63
计算方法:(9-2)x9=63
2、总结
被减数的十位数减去它的个位数乘以9,等于差。
三、求只是首尾换位,中间数相同的两个三位数的差
1、例题
936-639=297
计算方法:(9-6)x9=27
注意!27中间必须加9, 即为差297
723-327=396
计算方法:(7-3)x9=36
注意!36中间必须加9, 即为差396
873-378=495
计算方法:(8-3)x9=45
注意!45中间必须加9, 即为差495
2、总结
被减数的百位数减去它的个位数乘以9,(差的中间必须写9)等于差。
四、求互补两个数的差
1、例题
73-27=46
计算方法:(73-50)x2=46
613-387=226
计算方法:(613-500)x2=226
8112-1888=6224
计算方法:(8112-5000)x2=6224
2、总结
两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2;以此类推......
乘法的神奇速算法
一、十位数相同,个位数互补的两位数乘法
1、口诀
十位加一乘十位,个位相乘写后边(未满10补零)。
2、例题
67x 63= 4221
计算方法:(6+1)x6=42
7x3=21写在42的后面,即为乘积4221
38x32=1216
计算方法:(3+1)x3=12
8x2=16写在12的后面,即为乘积1216
76x74=5624
计算方法:(7+1)x7=56
6x4=24写在56的后面,即为乘积5624
81 x89=7209
计算方法:(8+1)x8=72
1x9=09写在72的后面,(未满10补零)即为乘积7209
二、十位数互补,个位数相同的两位数乘法
1.口诀
十位相乘加个位,个位相乘写后边(未满10补零)。
2.例题
76x 36=2736
计算方法:7x3+6=27
6x6= 36写在27的后面,即乘积2736
68x 48=3264
计算方法:6x4+8=32
8x8=64写在32的后面,即为乘积3264
54x54=2916
计算方法:5x5+4=29
4x4=16写在29的后面,即为乘积2916
83 x 23=1909
计算方法:8x2+3=19
3x3=09(未满10补零)写在19的后面,即为乘积1909
同理,56的平方是5x5+6+6x6=3136
57的平方是5x5+7+7x7=3249
58的平方是5x5+8+8x8=3364........
三、一个数的十位和个位互补,另一个数相同的乘法运算
1、例题
37x66=2442
计算方法:(3+1)x6=24
7x6=42写在24的后面,即乘积2442
46 x77=3542
计算方法:(4+1)x7=35
6x7=42写在35的后面,即乘积3542
44x28=1232
计算方法:(2+1)x4=12
4x8=32写在12的后面,即乘积1232
88888888888
x 37
————————
计算方法:从左到右(3+1)x8=32(前积)
7x8=56 (尾积)
中间9个8没有乘照写。
3288888888856
2、总结
互补数十位加个1,和另一个十位乘得积,后写两个个位积,即为所求最终积
四、11的乘法运算
1、例题
例题1:231415x11=2545565
计算方法:从左到右,高位是2则进2;两两相加挨次写 2+3=5;3+1=4;1+4=5;4+1=5;1+5=6;个位是5还写5
例2:3254216425x11=35796380675
计算方法同上,其中6+4注意进位!
2、口诀
高位是几则进几,两两相加挨次写,相加超十前加一,个位是几还写几。
五、十几与十几相乘的运算
1、例题
13x12=156
计算方法:(13+2)x10=150
3x2=6 150+6=156
15x17=255
计算方法:(15+7)x10=220
5x7=35 220+35=255
18 x16=288
计算方法:(18+6)x10=240
8x6=48 240+48=288
19x18=342
计算方法:(19+8)x10=270
9x8=72 270+72=342
同理:求11—19的平方,采取上述方法,则方便快捷得多。
2、口诀
一数加上另数尾,乘10再加尾数积。
六、个位数都是1的乘法运算
1、例题
31x21=651
计算方法:3x2=62+3=5
1x1=1
51 x71=3621
计算方法:5x7=35 +1 =36
5+7=12(写2进1) 1x1=1
61 x81=4941
计算方法:6x8=48+1=49
6+8=14(写4进1) 1x1=1
91x81=7371
计算方法: 9 x8=72+1=73
9+8=17(写7进1) 1x1=1
2、口诀
末位皆一者,首位之积接着首位之和(满十进位),尾数之积后面接。
七、特殊数的乘法运算
1、例题
72 x15=1080
计算方法:72÷2=36 15 x2=30 36x30=1080
366 x 25=9150
计算方法:366÷4=91.5 25 x4=100
91. 5 X100=9150
612x35=21420
计算方法:612÷2=306 35x2=70
306x70=21420
214 x45= 9630
计算方法:214÷2=107 45x2=90
107x90=9630
568 x125=71000
计算方法:568÷8=71 125x8=1000
71x1000= 71000
2、口诀
为便于计算,被乘数缩小与乘数扩大相同的倍数。
八、一百零几乘一百零几
1、例题
101X102=10302
计算方法:101+2=103
1X2=02 两数相接即为乘积10302
103 X104=10712
计算方法:103+4=107
3X4=12
两数相接即为乘积10712
104 X105=10920
计算方法:104+5=109
4X5=20
两数相接即为乘积10920
105 X108=11340
计算方法:105+8=113
5X8=40
两数相接即为乘积11340
103 X109=11227
计算方法:103+9=112
3X9=27
两数相接即为乘积11227
108×107=11556
计算方法:108+7=115 8X7=56
两数相接即为乘积11556
同理:求101、102、103......109的平方,也可以采用上述方法。如107的平方=107+7=114, 7x7=49,两数相接11449即为107的平方
2、口诀
一数加上另数尾,尾数之积后面接(未满10的,前面补零)。
除法的神奇速算法
除法的目的是求商,但从被除数中突然看不出含有多少商时,可用试商,估商的办法,看被乘数最高几位数含有几个除数(即含商几倍),就由本位加补数几次,其得数就是商。
一、小数组
凡是被除数含有除数1、2、3倍时、其方法为:
被除数含商 1倍:由本位加补数一次。
被除数含商 2倍:由本位加补数二次。
被除数含商 3倍:由本位加补数三次。
1、例题
7995÷65=123,(65的补数是35)
2、算序
①被除数前两位79中含除数65一倍,加补数一次(35),得1-1495(破折号前为商,破折号后为被除数,下同);
②被乘数149中含除数二倍,加补数二次(35×2=70)得12-195;
③被除数195含除数三倍,加补数三次(35×3=105)得123(商)。
二、中数组
凡是被除数含有除数4、5、6倍时、其方法为:
被除数含商4倍:前位加补数一半,本位减补数一次。
被除数含商 5倍:前位加补数一半,本位不动。
被除数含商6倍:前位加补数一半,本位加补数一次。
1、例题
35568÷78=456(78的补数是22)
2、算序
355中含有除数4倍,所以前位加11,本位减22,得4-4368;
436中含除数5倍,前位加11,本位不动,得45-468;
468中含除数6倍,前位加11,本位加22,得456(商)。
三、大数组
凡是被除数含有除数7、8、9倍时、其方法为:
被除数含商9倍:前位加补数一次,本位减补数一次。
被除数含商 8倍:前位加补数一次,本位减补数二次。
被除数含商7倍:前位加补数一次,本位减补数三次。
1、例题
884352÷896=987(896的补数是104)
2、算序
①8843中含除数9倍,前位加104,本位减104,得9-77952;
②7795中含除数8倍前位加104,本位减208,得98-6272;