导航:首页 > 源码编译 > 压缩感知算法在实际中的应用

压缩感知算法在实际中的应用

发布时间:2023-01-04 17:53:21

❶ 什么是“压缩感知”

压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。

压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法用到讯号稀疏的特性,得以从相对较少的测量值还原出原来整个欲得知的讯号。
MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。

❷ 谁能解释一下压缩感知的用途和基本原理

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

❸ 奈奎斯特采样定理与压缩感知

姓名:苏彦恺

学号:14020150008

【嵌牛导读】:传统的奈奎斯特采样定律随着数字信号处理技术的发展,其缺陷以及应用上的不便日渐凸显,压缩感知技术应运而生。本文依据《数字信号处理》课程所学,对奈奎斯特采样定理进行了原理以及上的概述,同时在本文的后半部分,对压缩感知这一新式的信号处理技术进行了简单介绍。在本文的末尾,依据奈奎斯特采样定理与压缩感知原理上的异同进行了优缺点的分析,同时对压缩感知的发展进行了展望。

【嵌牛鼻子】:数字信号处理;奈奎斯特采样定理;压缩感知;稀疏矩阵

【嵌牛提问】:什么是压缩感知?与传统的奈奎斯特采样定理相比,压缩感知有什么样的特点和优势?

【嵌牛正文】:

奈奎斯特采样定理部分

一、概述

在数字信号处理领域中,采样定理是连续时间信号(通常称为“模拟信号”)和离散时间信号(通常称为“数字信号”)之间的基本桥梁。该定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。 它为采样率建立了一个足够的条件,该采样率允许离散采样序列从有限带宽的连续时间信号中捕获所有信息

二、基本原理 :

在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍。

当用采样频率F对一个信号进行采样时,信号中F/2以上的频率不是消失了,而是对称的映象到了F/2以下的频带中,并且和F/2以下的原有频率成分叠加起来,这个现象叫做“混叠”(aliasing).

消除混叠的方法有两种:

1.提高采样频率F,即缩小采样时间间隔.然而实际的信号处理系统不可能达到很大的采样频率,处理不了很多的数据.另外,许多信号本身可能含有全频带的频率成分,不可能将采样频率提高到无穷大.所以,通过采样频率避免混叠是有限制的.

2.采用抗混叠滤波器.在采用频率F一定的前提下,通过低通滤波器滤掉高于F/2的频率成分,通过低通滤波器的信号则可避免出现频率混叠.

公式:C = B * log2 N ( bps )

三、应用

采样定理通常针对单个变量的函数进行公式化。因此,定理可直接适用于时间相关的信号,并且通常在该上下文中公式化。然而,采样定理可以以直接的方式扩展到任意多个变量的函数。

灰度图像通常表示为代表位于行和列采样位置的交叉处的像素(图像元素)的相对强度的实数的二维阵列(或矩阵)。因此,图像需要两个独立变量或索引,以指定每个像素唯一一个用于行,一个用于列。

彩色图像通常由三个单独的灰度图像的组合构成,一个代表三原色(红色,绿色和蓝色)或简称RGB中的每一个。对于颜色使用3向量的其他颜色空间包括HSV,CIELAB,XYZ等。诸如青色,品红色,黄色和黑色(CMYK)的一些颜色空间可以通过四维表示颜色。所有这些都被处理为二维采样域上的向量值函数。

类似于一维离散时间信号,如果采样分辨率或像素密度不足,图像也可能遭受混叠。例如,具有高频率(换句话说,条纹之间的距离小)的条纹衬衫的数码照片可以在衬衫被照相机的图像传感器采样时导致衬衫的混淆。对于这种情况,在空间域中采样的“解决方案”将是更靠近衬衫,使用更高分辨率的传感器,或者在用传感器采集图像之前对图像进行光学处理

压缩感知部分

一、概述

压缩感知(Compressed sensing),也被称为压缩采样(Compressivesampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法利用讯号稀疏的特性,相较于奈奎斯特理论,得以从较少的测量值还原出原来整个欲得知的讯号。MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。近几年,为了因应即将来临的第五代移动通信系统,压缩感知技术也被大量应用在无线通讯系统之中,获得了大量的关注以及研究。

二、基本原理

为了更好的说明压缩感知的基本原理,在这里引入奈奎斯特采样进行比较说明。

如图2.1所示, 图b、d为三个余弦函数信号叠加构成的信号,在频谱图(图a)中只有个峰值。 如果对其进行8倍于全采样的等间距亚采样(图b下方的红点),则频域信号周期延拓后,就会发生混叠(图c),无法从结果中复原出原信号。

而如果采用随机亚采样(图2.2b上方的红点),那么这时候频域就不再是以固定周期进行延拓了,而是会产生大量不相关的干扰值。如图2.2c,最大的几个峰值还依稀可见,只是一定程度上被干扰值覆盖。这些干扰值看上去非常像随机噪声,但实际上是由于三个原始信号的非零值发生能量泄露导致的(不同颜色的干扰值表示它们分别是由于对应颜色的原始信号的非零值泄露导致的)。得到如图2.2d的频谱图后,再采用匹配追踪的算法,就可以对信号进行恢复。以上就是压缩感知理论的核心思想——以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,由于频谱是均匀泄露的,而不是整体延拓的,因此可以通过特别的追踪方法将原信号恢复。

三、应用

1、全息成像

全息成像是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者投射的光线可以通过记录胶片完全重建,通过不同方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的想可以使人产生立体视觉。然而全息图记录的立体信息非常庞大,在满足传统的香农采样定理进行采样时很难达到的带宽及存储和传输这些信息成为限制全息术发展的难题。

压缩感知技术为传统的信息采样传输带来了革命性的突破,为信号的计算和传输节省了很大资源。利用压缩感知可以去掉大量没有实际意义的信息采样,通过远低于传统采样样本点就可以重构出原始信号,解决了全息术在数据存储和传输方面的限制。

2、核磁共振成像

核磁共振成像作为一种极其重要的医学成像技术,具有对病灶诊断精确、对人体安全性高等优点,但是较长的数据采集时间成为其广泛应用的瓶颈。因此,在保证成像质量的前提下,探索一种新的快速成像方法迫在眉睫。压缩感知作为一种全新的信号采样理论,针对稀疏信号或可压缩信号,可以在采样数量远少于传统采样方式的情况下精确地恢复出原始信号,这就为核磁共振图像的快速获取提供了一种新的思路。

四、奈奎斯特和压缩感知的对比

从采样的角度来看,压缩感知和基于奈奎斯特采样定理的传统信号采集是两种不同形式的信号采集方式。(压缩感知打破了传统信号处理中对于奈奎斯特采样要求的限制)

1.采样率:在压缩感知理论下,信号的采样率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容(稀疏性)。关于采样率的计算方式,压缩感知是从少量离散测量数据恢复离散数字信号,其计算方式为采样率=测量值的大小/恢复信号的大小;而传统信号采集是从离散采样数据中恢复模拟信号。

2.信号采集方式:传统采样理论是通过均匀采样获取数据;压缩感知则通过计算信号与一个观测函数之间的内积来获得观测数据。

3.恢复信号形式:传统采样定理关注的对象是无限长的连续信号;压缩感知是有限维观测向量空间的向量即离散信号。

4.恢复信号方式:传统采样恢复是在奈奎斯特采样定理的基础上,通过采样数据的sinc函数线性内插获得,而压缩感知采用的是利用信号的稀疏性,从线性观测数据中通过求解一个非线性的优化问题来恢复信号的方法。

5.压缩感知的核心思想:压缩和采样合并进行,并且测量值远小于传统采样方法的数据量,突破香农采样定理的瓶颈,使高分辨率的信号采集成为可能。

总结

奈奎斯特采样定理一直是信号处理领域的金科玉律,但其性能仍没法满足诸如全息成像、核磁共振等产生庞大数据的技术的信息恢复。然而在数字信号处理领域进入二十一世纪以后,压缩感知技术带来了颠覆性的改变,以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,通过特别的追踪方法将原信号恢复,使得用于恢复信号的数据量远少于传统采样所需要的数据量。压缩感知理论的诞生已经对计算科学、信号处理、电子信息等领域产生重大的影响,其理论具有广阔的应用前景,但仍然不够完善,希望在今后的研究中能弥补压缩感知现有的不足,展现其强大的生命力,为更多难题提供新的解决方法。

❹ 如何在压缩感知中正确使用阈值迭代算法

如何在压缩感知中正确使用阈值迭代算法? 测量[2]。重构算法是依据对信号的测量和问题的稀疏性重构原始信号的技术。上述过程可以描述为 如下数学模型:设s ∈ RN 为原始信号,该信号在某组基{ψi }N 下具有稀疏表示s = Ψx,其中Ψ = i=1 [ψ1 , ψ2 , . . . , ψN ], = [x1 , x2 , . . . , xN ] ;给定测量矩阵Θ ∈ RM ×N , Θ可得到信号s的观测值y, x 由 即 y = Θs = ΘΨx 其中Φ = ΘΨ ∈ RM ×N 称为传感矩阵, 为采样数;则从观测数据y来恢复未知的稀疏向量x, M 进而恢 复原始信号s的问题可建模为下述L0 问题: x∈RN min x 0 s.t. y = Φx (1.1) 这里 x 0 为x的非零分量的个数。显然L0 问题是一个组合优化问题(NP难问题[11]) 通常将其转化到 , 一个稀疏优化问题求解: x∈RN min S(x) s.t. y = Φx (1.2) 这里S(x)是x的某个稀疏度量[16],例如对给定的q ∈ (0, 1],取S(x) = x q ,其中 x q 是x的q?准范 q 数。L0 问题(1.1)和稀疏优化问题(1.2)通常都纳入如下的正则化框架来加以研究: x∈RN min Cλ (x) y ? Φx 2 + P (x; λ) (1.3) 其中λ > 0为正则化参数, (x; λ)为罚函数。 P 不同的罚函数对应不同的压缩感知模型, 例如, (x; λ) = P 1/2 λ x 0 对应L0 问题; (x; λ) = λ x 1 对应L1 问题[8], (x; λ) = λ x 1/2 对应L1/2 问题[9], P P 等等。正则化 框架提供了压缩感知研究的一般模型。通常,我们要求罚函数P (x; λ)具有某些特别性质,例如,我们 假设: (i) 非负性: (x; λ) P 0, ?x ∈ RN ; c}有界; 0; (ii) 有界性:对任何正常数c, 集合{x : P (x; λ) (iii) 可分性: (x; λ) = P N i=1 λp(xi ), p(xi ) 且 (iv) 原点奇异性: (x; λ)在x = 0处不可导, P 但在其它点处处可导。 本文目的是:从正则化框架(1.3)出发,研究并回答以下有关压缩感知应用的四个基本问题:如 何从给定的罚函数导出压缩感知问题的阈值表示?如何根据阈值表示设计阈值迭代算法并建立其收 敛性理论? 如何应用阈值迭代算法到压缩感知问题? 如何针对不同特征的压缩传感问题选择不同形式 的阈值迭代算法?所获结论期望为压缩感知中如何正确使用阈值迭代算法提供理论依据。 2 阈值迭代算法与压缩传感 本节讨论前三个问题。作为预备, 我们首先简要介绍阈值函数与阈值迭代算法。 2.1 阈值函数 高效、 快速、 高精度的重构算法是压缩感知广泛应用的前提。 阈值迭代算法 Thresholding Iterative ( Algorithms)正是这样一类十分理想的压缩感知重构算法,它因迭代简单、可单分量处理、能有效 2 中国科学 第 40 卷 第 1 期 用于大规模高维问题而得到普遍推崇。Blumensath等[14]提出了求解近似L0 问题的Hard阈值迭代算 法, Daubechies等[15]提出了求解L1 问题的Soft阈值迭代算法, 徐宗本等[9, 10, 16]提出了求解L1/2 问题 的Half和Chalf阈值迭代算法。

❺ 什么是“压缩感知”(压缩传感、compressed/compressive sensing)

压缩感知(Compressive Sensing, or Compressed Sampling,简称CS),是近几年流行起来的一个介于数学和信息科学的新方向,由Candes、Terres Tao等人提出,挑战传统的采样编码技术,即Nyquist采样定理。
压缩感知技术-理论
压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。
压缩感知技术-概念特征
压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。 稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等。而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求。也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了。 压缩感知的概念就是为了解决这样的矛盾而产生的。既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接“采集”压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的“压缩感知”,也就是说,直接感知压缩了的信息。
压缩感知技术-应用影响
在大量的实际问题中,人们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和人们所希望重建的信息之间有某种全局性的变换关系,并且人们预先知道那些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展地非常广泛了。 但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国Rice大学的一部分科学家正在试图开发一种新的摄影装置(被称为“单像素照相机”),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件(也就是说有数学方法保证能够从不完整的数据中还原出信号)无法得到满足。这种时候,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。 但是无论如何,压缩感知所代表的基本思路:从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。
复制的。。。。。

❻ 压缩感知

【嵌牛导读】:传统基于奈奎斯特定律的信号采样方法暴露出来的缺点越来越多,几年来一种新的理论----压缩感知打破了奈奎斯特采样定理(采样速率大于信号最高频率的两倍),成为了新的研究热点。

【嵌牛鼻子】:压缩感知;信号采集;欠奈奎斯特采样;正交匹配追踪

【嵌牛提问】:压缩感知的原理?

【嵌牛正文】:

2004年,D.Donoho等人提出了压缩感知理论,Tao T等人在此基础上进行了改进[ ],为超宽带信号采集问题的解决开辟了一条新的道路。该理论是假设待采样信号在某个空间内具有稀疏的特性(只有少量的非零元素),利用测量矩阵将高维的稀疏信号投影为低维的测量值,从而完成对信号的压缩。然后通过优化求解的方法,可以精确重构出原始信号。该理论将压缩和数模变换合围一体,利用低采样率完成对宽带信号的压缩采样,降低了对AD器件性能的要求,具有十分良好的发展前景,其系统框图如下图所示。

压缩感知主要分为三个部分:信号稀疏表示、压缩测量、信号重构。

信号稀疏表示:

首先介绍一下压缩感知中十分重要的几个概念。

稀疏性:如果一个向量的大多数元素都为0,只有少量元素具有有效值,那么这个向量就具有稀疏性[ ]。

稀疏度:如果一个向量中非零元素个数小于N,即‖x‖_0

压缩测量:

压缩测量是压缩感知中非常重要的一步,其关键在于压缩矩阵的选择。压缩矩阵的作用就是将高维的信号映射为低维的输出信号,完成信号的压缩测量。测量过程可以用下式表示。

令测量矩阵A_(l*n)=φ_(l*n)*Ɵ_(n*n),上式可简化为下式:

如果要求信号能够重构,那么这种映射应该是一一对应的,即特定的µ只能映射为唯一的y。这样的唯一性是保证信号能够精确重构的前提。为了满足这样的重构条件,测量矩阵A必须满足一定的条件。T.TAO等人提出为此提出了RIP条件(受限等距特性)。如果A能满足下式的不等式:

上式表示在测量矩阵满足RIP条件时,重构出的信号的误差在相当小的一个范围内。经过上面的讨论,我们就为精确重构出信号提供了理论上的保障。

信号重构:

重构算法是压缩感知的核心内容和最后一步,其恢复精确度和算法复杂程度决定了采样系统的可行性和实用性。由采样输出y_(l*1)求解输入信号µ_(n*1)是一个未知数个数多余方程个数的欠定方程。通常情况下其解有无数个,需要进行优化求解来确定最优解。

常用的优化求解算法为:贪婪算法,凸优化算法和组合算法。

AIC(模拟信息转换器), 其结构如下图所示。

单像素相机

每次只取一个像素点,随机取若干次。运用算法对所取的像素值进行处理,恢复出原始信号

医学成像

❼ 压缩感知的基本知识

现代信号处理的一个关键基础是 Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。但是Shannon 采样定理是一个信号重建的充分非必要条件。在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

❽ 压缩感知的图像处理与应用有哪些

数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.

❾ 请问研究压缩感知需要学哪些相关知识比如,数字信号处理数字图像处理请明白人指点迷津!谢谢啦!

我个人觉得,数字信号处理和数字图像处理是针对具体的应用领域做基础知识学习。而你说的压缩感知是一种高于具体应用领域的智能算法,压缩感知可以用于数字信号方面,同样也可以应用与数字图像处理。确切的说数字信号处理包含了数字图像处理,只是数字图像处理后来发展了跟多深入的知识,所以又把其独立成一门课程。比如Mallat的《信号处理的小波导引:稀疏方法(原书第3版)》这本书上的内容,就大部分说的应用时数字图像。
总之,数字信号处理、数字图像处理肯定是要学的,否则你学了压缩感知也不知道用在什么领域,要具体学习压缩感知方面的知识,再去看看IEEE里的一些论文还有一些博士论文。

阅读全文

与压缩感知算法在实际中的应用相关的资料

热点内容
单片机pwm频率计算 浏览:639
如何在手机中安代理服务器 浏览:581
vnuc5网络版服务器地址 浏览:760
android和pc通信 浏览:106
芜湖ug编程培训 浏览:677
如何打开cad命令行 浏览:782
编译输入错误图片大全 浏览:688
在哪里找腾讯app 浏览:373
智能管家如何与安卓互通 浏览:733
秒表倒计时单片机程序 浏览:738
单片机小学期交通灯 浏览:591
如何查app文件在哪里 浏览:65
美的美居app有什么功能 浏览:410
安卓手机如何刷为华为系统 浏览:394
服务器如何搭建自己的简历 浏览:580
编译的程序名称 浏览:630
安卓机如何使用苹果同款闹钟 浏览:624
说文解字中华书局pdf 浏览:150
java反序列化xml 浏览:458
小蓝app为什么消息未连接 浏览:152