1. 进化算法的起源发展
进化计算包括遗传算法(Genetic Algorithms)、遗传规划(Genetic Programming)、进化策略(Evolution Strategies)和进化规划(Evolution Programming)4种典型方法。第一类方法比较成熟,现已广泛应用,进化策略和进化规划在科研和实际问题中的应用也越来越广泛。
遗传算法的主要基因操作是选种、交配和突变,而在进化规则、进化策略中,进化机制源于选种和突变。就适应度的角度来说遗传算法用于选择优秀的父代(优秀的父代产生优秀的子代),而进化规则和进化策略则用于选择子代(优秀的子代才能存在)。
遗传算法与遗传规划强调的是父代对子代的遗传链,而进化规则和进化策略则着重于子代本身的行为特性,即行为链。
进化规则和进化策略一般都不采用编码,省去了运作过程中的编码—解码手续更适用于连续优化问题,但因此也不能进行非数值优化。进化策略可以确定机制产生出用于繁殖的父代,而遗传算法和进化规则强调对个体适应度和概率的依赖。
此外,进化规则把编码结构抽象为种群之间的相似,而进化策略抽象为个体之间的相似。进化策略和进化规则已应用于连续函数优化、模式识别、机器学习、神经网络训练、系统辨识和智能控制的众多领域
2. 进化算法入门读书笔记(一)
这里我参考学习的书籍是:
《进化计算的理论和方法》,王宇平,科学出版社
《进化优化算法:基于仿生和种群的计算机智能方法》,[美]丹·西蒙,清华大学出版社。
进化算法是 求解优化问题 的一种算法,它是 模仿生物进化与遗传原理 而设计的一类随机搜索的优化算法。
不同的作者称进化算法有不同的术语,以下。注:这里仅列举出了我自己比较容易混淆的一些,并未全部列出。
进化计算: 这样能强调算法需要在 计算机上 实施,但进化计算也可能指不用于优化的算法(最初的遗传算法并不是用于优化本身,而是想用来研究自然选择的过程)。因此,进化优化算法比进化计算更具体。
基于种群的优化: 它强调进化算法一般是让问题的候选解 种群 随着时间的进化以得到问题的更好的解。然而许多进化算法每次迭代只有单个候选解。因此,进化算法比基于种群的优化更一般化。
计算机智能/计算智能: 这样做常常是为了区分进化算法与专家系统,在传统上专家系统一直被称为人工智能。专家系统模仿演绎推理,进化算法则模仿归纳推理。进化算法有时候也被看成是人工智能的一种。计算机智能是比进化算法更一般的词,它包括神经计算、模糊系统、人工生命这样的一些技术,这些技术可应用于优化之外的问题。因此,进化计算可能比计算机智能更一般化或更具体。
由自然启发的计算/仿生计算: 像差分进化和分布估计算法这些进化算法可能并非源于自然,像进化策略和反向学习这些进化算法与自然过程联系甚微。因此,进化算法比由自然启发的算法更一般化,因为进化算法包括非仿生算法。
机器学习: 机器学习研究由经验学到的计算机算法,它还包括很多不是进化计算的算法,如强化学习、神经网络、分簇、SVM等等。因此,机器学习比进化算法更广。
群智能算法: 一些人认为群智能算法应与进化算法区分开,一些人认为群智能算法是进化算法的一个子集。因为群智能算法与进化算法有相同的执行方式,即,每次迭代都改进问题的候选解的性能从而让解的种群进化。因此,我们认为群智能算法是一种进化算法。
进化算法的简单定义可能并不完美。在进化算法领域术语的不统一会让人困惑,一个算法是进化算法如果它通常被认为是进化算法,这个戏谑的、循环的定义一开始有些麻烦,但是一段时间后,这个领域工作的人就会习惯了。
优化几乎适用于生活中的所有领域。除了对如计算器做加法运算这种过于简单的问题,不必用进化算法的软件,因为有更简单有效的算法。此外对于每个复杂的问题,至少应该考虑采用进化算法。
一个优化问题可以写成最小化问题或最大化问题,这两个问题在形式上很容易互相转化:
函数 被称为目标函数,向量 被称为独立变量,或决策变量。我们称 中元素的个数为问题的维数。
优化问题常常带有约束。即在最小化某个函数 时,对 可取的值加上约束。不举例。
实际的优化问题不仅带有约束,还有多个目标。这意味着我们想要同时最小化不止一个量。
例子:
这里评估这个问题的一种方式是绘制 作为函数 的函数的图:
如图,对在实线上的 的值,找不到能同时使 和 减小的 的其他值,此实线被称为 帕累托前沿 ,而相应的 的值的集合被称为帕累托集。(此处的帕累托最优问题十分重要,可以参考这个链接来学习和理解: 多目标优化之帕累托最优 - 知乎 ,非常清晰易懂。)
该例子是一个非常简单的多目标优化问题,它只有两个目标。实际的优化问题通常涉及两个以上的模目标,因此很难得到它的帕累托前沿,由于它是高维的,我们也无法将它可视化。后面的章节将会仔细讨论多目标进化优化。
多峰优化问题是指问题不止一个局部最小值。上例中的 就有两个局部最小值,处理起来很容易,有些问题有很多局部最小值,找出其中的全局最小值就颇具挑战性。
对于前面的简单例子,我们能用图形的方法或微积分的方法求解,但是许多实际问题除了有更多独立变量、多目标,以及带约束之外更像上面的Ackley函数这样,对于这类问题,基于微积分或图形的方法就不够用了,而进化算法却能给出更好的结果。
到现在为止我们考虑的都是连续优化问题,也就是说,允许独立变量连续地变化。但有许多优化问题中的独立变量智能在一个离散集合上取值。这类问题被称为组合优化问题。如旅行商问题。
对于有 个城市的旅行商问题,有 个可能的解。对于一些过大的问题,硬算的方法不可行,像旅行商这样的组合问题没有连续的独立变量,因此不能利用导数求解。除非对每个可能的解都试一遍,不然就无法确定所得到的组合问题的解是否就是最好的解。进化算法对这类大规模、多维的问题,它至少能帮我们找出一个好的解(不一定是最好的)。
3. 人工智能中,进化计算是什么意思包括哪些内容呢
进化计算(Evolutionary Computation,EC)是一种模拟自然界生物进化过程与机制,进行问题求解的自组织、自适应的随机搜索技术
进化计算主要包括遗传算法(Genetic Algorithm,GA)、进化策略(Evolutionary Strategy,ES)、进化规划(Evolutionary Programming,EP)和遗传规划(Genetic Programming,GP)四大分支。其中,遗传算法是进化计算中最初形成的一种具有普遍影响的模拟进化优化算法。
4. 进化算法的简介
进化算法包括遗传算法、遗传规划、进化规划和进化策略等等。进化算法的基本框架还是简单遗传算法所描述的框架,但在进化的方式上有较大的差异,选择、交叉、变异、种群控制等有很多变化,进化算法的大致框图可描述如右图所示:
同遗传算法一样,进化算法的收敛性也有一些结果,文献证明了在保存最优个体时通用的进化计算是收敛的,但进化算法的很多结果是从遗传算法推过去的。
遗传算法对交叉操作要看重一些,认为变异操作是算法的辅助操作;而进化规划和进化策略认为在一般意义上说交叉并不优于变异,甚至可以不要交叉操作。
5. 进化算法的特点
进化计算是一种具有鲁棒性的方法,能适应不同的环境不同的问题,而且在大多数情况下都能得到比较满意的有效解。他对问题的整个参数空间给出一种编码方案,而不是直接对问题的具体参数进行处理,不是从某个单一的初始点开始搜索,而是从一组初始点搜索。搜索中用到的是目标函数值的信息,可以不必用到目标函数的导数信息或与具体问题有关的特殊知识。因而进化算法具有广泛的应用性,高度的非线性,易修改性和可并行性。
此外,算法本身也可以采用动态自适应技术,在进化过程中自动调整算法控制参数和编码精度,比如使用模糊自适应法 。 进化策略(ES)是在1965年由Rechenberg和Schwefel独立提出的。
进化策略的一般算法
(1) 问题为寻找实值n维矢量x,使得函数F(x): R→R取极值。不失一般性,设此程序为极小化过程。
(2) 从各维的可行范围内随机选取亲本xi,i = 1, … , p的始值。初始试验的分布一般是均匀分布。
(3) 通过对于x的每个分量增加零均值和预先选定的标准差的高斯随机变量,从每个亲本xi产生子代xi’。
(4) 通过将适应度F(xi)和F(xi’),i=1,…,P进行排序,选择并决定那些矢量保留。具有最小适应度的P个矢量变成下一代的新亲本。
进行新试验,选择具有最小方差的新子代,一直到获得充分解,或者直到满足某个终止条件。
在这个模型中,把试验解的分量看做个体的行为特性,而不是沿染色体排列的基因。假设不管发生什么遗传变换,所造成各个个体行为的变化均遵循零均值和某个标准差的高斯分布。
由于基因多效性和多基因性,特定基因的改变可以影响许多表现型特征。所以在创造新子系时,较为合适的是同时改变亲本所有分量。
(1+1)—ES:
早期的进化策略的种群中只包含一个个体,并且只使用变异操作。在每一代中,变异后的个体与其父代进行比较,并选择较好的一个,这种选择策略被称为(1+1)策略。
(1+1)—ES的缺点:
(1) 各维取定常的标推差使得程序收敛到最优解的速度很慢;
(2) 点到点搜索的脆弱本质使得程序在局部极值附近容易受停滞的影响(虽然此算法表明可以渐近地收敛到全局最优点)。
(μ+λ)—ES:μ个亲本制造λ个子代,所有解均参加生存竞争,选出最好的μ个作为下一代的亲本。
(μ,λ)—ES:只有λ个子代参加生存竞争,在每代中μ个亲本被完全取代。
1.个体的表示法:
每个解矢量不仅包括了n维试验矢量x,而且还包括了扰动矢量σ,后者给出如何变异x以及它本身如何变异的指令。
2.变异:
设x为当前矢量。σ为对应于x每个维的方差矢量,于是新的解矢量x’,σ’可以这样产生:
3.交叉:
4.选择
在进化策略中,选择是按完全确定的方式进行。(μ,λ)—ES是从λ个子代个体集中选择μ(1<μ<λA=个最好的个体;(μ+λ)—ES是从父代和子代个体的并集中选择μ个最好的个体。虽然(μ+λ)—ES保留最优的个体能保证性能单调提高,但这种策略不能处理变化的环境,因此,目前选用最多的还是(μ,λ)—ES。 进化规划(EP)由Fogel在20世纪60年代提出。
1.表示法和适应值度量
进化规划假设—个有界子空间 ,其中ui<vi。搜索区域被扩展到I=R,即个体为目标变量向量,a=x∈I,进化规划把目标函数值通过比例变换到正值,同时加入某个随机改变θ来得到适应值 ,其中δ是比例函数。
2.变异
可简化为:
3.选择
在P个父代个体每个经过一次变异产生P个子代后,进化规划利用一种随机q竞争选择方法从父代和子代的集合中选择P个个体,其中q>1是选择算法的参数。
6. 各种进化算法有什么异同
同遗传算法一样,差异进化算法包含变异和交叉操作,但同时相较于遗传算法的选择操作,差异进化算法采用一对一的淘汰机制来更新种群。由于差异进化算法在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。
进化算法
或称“演化算法” (evolutionary algorithms) 是一个“算法簇”,尽管它有很多的变化,有不同的遗传基因表达方式,不同的交叉和变异算子,特殊算子的引用,以及不同的再生和选择方法,但它们产生的灵感都来自于大自然的生物进化。
与传统的基于微积分的方法和穷举法等优化算法相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织、自适应、自学习的特性,能够不受问题性质的限制,有效地处理传统优化算法难以解决的复杂问题。
7. 进化算法的框架
进化算法是以达尔文的进化论思想为基础,通过模拟生物进化过程与机制的求解问题的自组织、自适应的人工智能技术。生物进化是通过繁殖、变异、竞争和选择实现的;而进化算法则主要通过选择、重组和变异这三种操作实现优化问题的求解。如图1: 1、t=0
2、初始化群体p(0)
3、评估初始化群体p(0)
4、while终止条件不满足do
5、 重组操作:p(t)=r(p(t))
6、 变异操作:p(t)=m(p(t))
7、 评估操作:p(t)
8、 选择操作:p(t+1)=s(p(t)UQ)
9、 t=t+1
10、end 图1:进化算法基本框架
其中r、m、s分别表示重组算子、变异算子、选择算子。
8. 进化算法的基本步骤
进化计算是基于自然选择和自然遗传等生物进化机制的一种搜索算法。与普通的搜索方法一样,进化计算也是一种迭代算法,不同的是进化计算在最优解的搜索过程中,一般是从原问题的一组解出发改进到另一组较好的解,再从这组改进的解出发进一步改进。而且在进化问题中,要求当原问题的优化模型建立后,还必须对原问题的解进行编码。进化计算在搜索过程中利用结构化和随机性的信息,使最满足目标的决策获得最大的生存可能,是一种概率型的算法。
一般来说,进化计算的求解包括以下几个步骤:给定一组初始解;评价当前这组解的性能;从当前这组解中选择一定数量的解作为迭代后的解的基础;再对其进行操作,得到迭代后的解;若这些解满足要求则停止,否则将这些迭代得到的解作为当前解重新操作。
以遗传算法为例,其工作步骤可概括为:
(1) 对工作对象——字符串用二进制的0/1或其它进制字符编码 。
(2) 根据字符串的长度L,随即产生L个字符组成初始个体。
(3) 计算适应度。适应度是衡量个体优劣的标志,通常是所研究问题的目标函数。
(4) 通过复制,将优良个体插入下一代新群体中,体现“优胜劣汰”的原则。
(5) 交换字符,产生新个体。交换点的位置是随机决定的
(6) 对某个字符进行补运算,将字符1变为0,或将0变为1,这是产生新个体的另一种方法,突变字符的位置也是随机决定的。
(7) 遗传算法是一个反复迭代的过程,每次迭代期间,要执行适应度计算、复制、交换、突变等操作,直至满足终止条件。
将其用形式化语言表达,则为:假设α∈I记为个体,I记为个体空间。适应度函数记为Φ:I→R。在第t代,群体P(t)={a1(t),a2(t),…,an(t)}经过复制r(reproction)、交换c(crossover)及突变m(mutation)转换成下一代群体。这里r、c、m均指宏算子,把旧群体变换为新群体。L:I→{True, Flase}记为终止准则。利用上述符号,遗传算法可描述为:
t=0
initialize P(0):={ a1(0),a2(0),…,an(0)};
while(l(P(t))≠True) do
evaluate P(t):{ Φ(a1(t)), Φ(a2(t)),…,Φ(an(t))};
reproction: P′(t):=r(P(t));
crossover: P″(t):=c(P′(t));
mutation: P(t+1):= m(P″(t));
t=t+1;
end
9. 人工智能之进化算法
进化计算的三大分支包括:遗传算法(Genetic Algorithm ,简称GA)、进化规划(Evolu-tionary Programming,简称EP)和进化策略(Evolution Strategies ,简称ES)。这三个分支在算法实现方面具有一些细微的差别,但它们具有一个共同的特点,即都是借助生物进化的思想和原理来解决实际问题。
遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法,由美国Holand J教授于1975年首次提出。它是利用某种编码技术作用于称为染色体的二进制数串,其基本思想是模拟由这些串组成的种群的进化过程,通过有组织的、然而是随机的信息交换来重新组合那些适应性好的串。遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并根据适应性来选择染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会。遗传算法尤其适用于处理传统搜索方法难于解决的复杂的非线性问题,可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域,是21世纪有关智能计算中的关键技术之一。
1964年,由德国柏林工业大学的RechenbergI等人提出。在求解流体动力学柔性弯曲管的形状优化问题时,用传统的方法很难在优化设计中描述物体形状的参数,然而利用生物变异的思想来随机地改变参数值并获得了较好效果。随后,他们便对这种方法进行了深入的研究和发展,形成了进化计算的另一个分支——进化策略。
进化策略与遗传算法的不同之处在于:进化策略直接在解空间上进行操作,强调进化过程中从父体到后代行为的自适应性和多样性,强调进化过程中搜索步长的自适应性调节;而遗传算法是将原问题的解空间映射到位串空间之中,然后再施行遗传操作,它强调个体基因结构的变化对其适应度的影响。
进化策略主要用于求解数值优化问题。
进化规划的方法最初是由美国人Fogel LJ等人在20世纪60年代提出的。他们在人工智能的研究中发现,智能行为要具有能预测其所处环境的状态,并按照给定的目标做出适当的响应的能力。在研究中,他们将模拟环境描述成是由有限字符集中符号组成的序列。
进化算法与传统的算法具有很多不同之处,但其最主要的特点体现在下述两个方面:
进化计算的智能性包括自组织、自适应和自学习性等。应用进化计算求解问题时,在确定了编码方案、适应值函数及遗传算子以后,算法将根据“适者生存、不适应者淘汰"的策略,利用进化过程中获得的信息自行组织搜索,从而不断地向最佳解方向逼近。自然选择消除了传统算法设计过程中的-一个最大障碍:即需要事先描述问题的全部特点,并说明针对问题的不同特点算法应采取的措施。于是,利用进化计算的方法可以解决那些结构尚无人能理解的复杂问题。
进化计算的本质并行性表现在两个方面:
一是进化计算是内在并行的,即进化计算本身非常适合大规模并行。
二是进化计算的内含并行性,由于进化计算采用种群的方式组织搜索,从而它可以同时搜索解空间内的多个区域,并相互交流信息,这种搜索方式使得进化计算能以较少的计算获得较大的收益。
10. 进化算法的差分算法
差分进化算法(Differential Evolution, DE)是一种新兴的进化计算技术,或称为差分演化算法、微分进化算法、微分演化算法、差异演化算法。它是由Storn等人于1995年提出的,最初的设想是用于解决切比雪夫多项式问题,后来发现DE也是解决复杂优化问题的有效技术。DE与人工生命,特别是进化算法有着极为特殊的联系。
差分进化算法是基于群体智能理论的优化算法,通过群体内个体间的合作与竞争产生的群体智能指导优化搜索。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒性,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。
差分进化算法是一种基于群体进化的算法,具有记忆个体最优解和种群内信息共享的特点,即通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。
DE是一种用于优化问题的启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法 。同遗传算法一样,DE包含变异和交叉操作,但同时相较于遗传算法的选择操作,DE采用一对一的淘汰机制来更新种群。由于DE在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。
DE由Storn 以及Price提出,算法的原理采用对个体进行方向扰动,以达到对个体的函数值进行下降的目的,同其他进化算法一样,DE不利用目标函数的梯度信息,因此对目标的可导性甚至连续性没有要求,适用性很强。同时,算法与粒子群优化有相通之处 ,但因为DE在一定程度上考虑了多变量间的相关性,因此相较于粒子群优化在变量耦合问题上有很大的优势。算法的实现参考实现代码部分。