‘壹’ 模型树层次经验请教(高手都进来吧!)
谢谢!我感觉
很多曲面特征都放在一同有点乱。
假如每个重要特征所用的曲面特征放在一个曲面集里,看上往比较有次序,而且修正起来比较方便。但是假如零件里特征多的话,也有很多曲面集在模型树里,你觉得如何??????????还有一个题目请教大虾,我在拆卸里设计零件时,需求借用其他零件的特征,当我用“曲面提取”得到另外零件的曲面特征。但是假如借用零件发生变化,这个零件往往不会跟着变化,我好像记得有个publication的
操纵,用在这方面,还请大虾你指点。
特别是top-down
建模时,基本建模思路能讲解一下嘛?????????谢谢
‘贰’ 决策树算法原理
决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。
如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。
一棵决策树的生成过程主要分为以下3个部分:
特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。
决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。
剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。
划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。
CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。
ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。
C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。
CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。
决策树算法的优点:
(1)便于理解和解释,树的结构可以可视化出来
(2)基本不需要预处理,不需要提前归一化,处理缺失值
(3)使用决策树预测的代价是O(log2m),m为样本数
(4)能够处理数值型数据和分类数据
(5)可以处理多维度输出的分类问题
(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能
(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好
决策树算法的缺点:
(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。
(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。
(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。
(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。
(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。
(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;
(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;
(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;
(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;
(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;
(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。
(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;
(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。
(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。
‘叁’ weka m5p算法中叶子节点中的百分数是什么意思
你的问题可能是: 类别属性(class)不能是数值型(numeric)的,应该是标称属性(nominal) 我记得C4.5是分类算法,不是回归算法。如果想要回归的话可以用其他回归算法,比如M5p、多成感知(神经网络)、线性回归等。
‘肆’ 数据挖掘-决策树算法
决策树算法是一种比较简易的监督学习分类算法,既然叫做决策树,那么首先他是一个树形结构,简单写一下树形结构(数据结构的时候学过不少了)。
树状结构是一个或多个节点的有限集合,在决策树里,构成比较简单,有如下几种元素:
在决策树中,每个叶子节点都有一个类标签,非叶子节点包含对属性的测试条件,用此进行分类。
所以个人理解,决策树就是 对一些样本,用树形结构对样本的特征进行分支,分到叶子节点就能得到样本最终的分类,而其中的非叶子节点和分支就是分类的条件,测试和预测分类就可以照着这些条件来走相应的路径进行分类。
根据这个逻辑,很明显决策树的关键就是如何找出决策条件和什么时候算作叶子节点即决策树终止。
决策树的核心是为不同类型的特征提供表示决策条件和对应输出的方法,特征类型和划分方法包括以下几个:
注意,这些图中的第二层都是分支,不是叶子节点。
如何合理的对特征进行划分,从而找到最优的决策模型呢?在这里需要引入信息熵的概念。
先来看熵的概念:
在数据集中,参考熵的定义,把信息熵描述为样本中的不纯度,熵越高,不纯度越高,数据越混乱(越难区分分类)。
例如:要给(0,1)分类,熵是0,因为能明显分类,而均衡分布的(0.5,0.5)熵比较高,因为难以划分。
信息熵的计算公式为:
其中 代表信息熵。 是类的个数, 代表在 类时 发生的概率。
另外有一种Gini系数,也可以用来衡量样本的不纯度:
其中 代表Gini系数,一般用于决策树的 CART算法 。
举个例子:
如果有上述样本,那么样本中可以知道,能被分为0类的有3个,分为1类的也有3个,那么信息熵为:
Gini系数为:
总共有6个数据,那么其中0类3个,占比就是3/6,同理1类。
我们再来计算一个分布比较一下:
信息熵为:
Gini系数为:
很明显,因为第二个分布中,很明显这些数偏向了其中一类,所以 纯度更高 ,相对的信息熵和Gini系数较低。
有了上述的概念,很明显如果我们有一组数据要进行分类,最快的建立决策树的途径就是让其在每一层都让这个样本纯度最大化,那么就要引入信息增益的概念。
所谓增益,就是做了一次决策之后,样本的纯度提升了多少(不纯度降低了多少),也就是比较决策之前的样本不纯度和决策之后的样本不纯度,差越大,效果越好。
让信息熵降低,每一层降低的越快越好。
度量这个信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不纯度的系数)的差, 是样本(parent是决策之前, 是决策之后)的信息熵(或者其他可以度量不纯度的系数), 为特征值的个数, 是原样本的记录总数, 是与决策后的样本相关联的记录个数。
当选择信息熵作为样本的不纯度度量时,Δ就叫做信息增益 。
我们可以遍历每一个特征,看就哪个特征决策时,产生的信息增益最大,就把他作为当前决策节点,之后在下一层继续这个过程。
举个例子:
如果我们的目标是判断什么情况下,销量会比较高(受天气,周末,促销三个因素影响),根据上述的信息增益求法,我们首先应该找到根据哪个特征来决策,以信息熵为例:
首先肯定是要求 ,也就是销量这个特征的信息熵:
接下来,就分别看三个特征关于销量的信息熵,先看天气,天气分为好和坏两种,其中天气为好的条件下,销量为高的有11条,低的有6条;天气坏时,销量为高的有7条,销量为低的有10条,并且天气好的总共17条,天气坏的总共17条。
分别计算天气好和天气坏时的信息熵,天气好时:
根据公式 ,可以知道,N是34,而天气特征有2个值,则k=2,第一个值有17条可以关联到决策后的节点,第二个值也是17条,则能得出计算:
再计算周末这个特征,也只有两个特征值,一个是,一个否,其中是有14条,否有20条;周末为是的中有11条销量是高,3条销量低,以此类推有:
信息增益为:
另外可以得到是否有促销的信息增益为0.127268。
可以看出,以周末为决策,可以得到最大的信息增益,因此根节点就可以用周末这个特征进行分支:
注意再接下来一层的原样本集,不是34个而是周末为“是”和“否”分别计算,为是的是14个,否的是20个。
这样一层一层往下递归,直到判断节点中的样本是否都属于一类,或者都有同一个特征值,此时就不继续往下分了,也就生成了叶子节点。
上述模型的决策树分配如下:
需要注意的是,特征是否出现需要在分支当中看,并不是整体互斥的,周末生成的两个分支,一个需要用促销来决策,一个需要用天气,并不代表再接下来就没有特征可以分了,而是在促销决策层下面可以再分天气,另外一遍天气决策下面可以再分促销。
决策树的模型比较容易解释,看这个树形图就能很容易的说出分类的条件。
我们知道属性有二元属性、标称属性、序数属性和连续属性,其中二元、标称和序数都是类似的,因为是离散的属性,按照上述方式进行信息增益计算即可,而连续属性与这三个不同。
对于连续的属性,为了降低其时间复杂度,我们可以先将属性内部排序,之后取相邻节点的均值作为决策值,依次取每两个相邻的属性值的均值,之后比较他们的不纯度度量。
需要注意的是,连续属性可能在决策树中出现多次,而不是像离散的属性一样在一个分支中出现一次就不会再出现了。
用信息熵或者Gini系数等不纯度度量有一个缺点,就是会倾向于将多分支的属性优先分类——而往往这种属性并不是特征。
例如上面例子中的第一行序号,有34个不同的值,那么信息熵一定很高,但是实际上它并没有任何意义,因此我们需要规避这种情况,如何规避呢,有两种方式:
公式如下:
其中k为划分的总数,如果每个属性值具有相同的记录数,则 ,划分信息等于 ,那么如果某个属性产生了大量划分,则划分信息很大,信息增益率低,就能规避这种情况了。
为了防止过拟合现象,往往会对决策树做优化,一般是通过剪枝的方式,剪枝又分为预剪枝和后剪枝。
在构建决策树时,设定各种各样的条件如叶子节点的样本数不大于多少就停止分支,树的最大深度等,让决策树的层级变少以防止过拟合。
也就是在生成决策树之前,设定了决策树的条件。
后剪枝就是在最大决策树生成之后,进行剪枝,按照自底向上的方式进行修剪,修剪的规则是,评估叶子节点和其父节点的代价函数,如果父节点的代价函数比较小,则去掉这个叶子节点。
这里引入的代价函数公式是:
其中 代表的是叶子节点中样本个数, 代表的是该叶子节点上的不纯度度量,把每个叶子节点的 加起来,和父节点的 比较,之后进行剪枝即可。
‘伍’ 决策树算法-原理篇
关于决策树算法,我打算分两篇来讲,一篇讲思想原理,另一篇直接撸码来分析算法。本篇为原理篇。
通过阅读这篇文章,你可以学到:
1、决策树的本质
2、决策树的构造过程
3、决策树的优化方向
决策树根据使用目的分为:分类树和回归树,其本质上是一样的。本文只讲分类树。
决策树,根据名字来解释就是,使用树型结构来模拟决策。
用图形表示就是下面这样。
其中椭圆形代表:特征或属性。长方形代表:类别结果。
面对一堆数据(含有特征和类别),决策树就是根据这些特征(椭圆形)来给数据归类(长方形)
例如,信用贷款问题,我根据《神奇动物在哪里》的剧情给银行造了个决策树模型,如下图:
然而,决定是否贷款可以根据很多特征,然麻鸡银行选择了:(1)是否房产价值>100w;(2)是否有其他值钱的抵押物;(3)月收入>10k;(4)是否结婚;这四个特征,来决定是否给予贷款。
先不管是否合理,但可以肯定的是,决策树做了特征选择工作,即选择出类别区分度高的特征。
由此可见, 决策树其实是一种特征选择方法。 (特征选择有多种,决策树属于嵌入型特征选择,以后或许会讲到,先给个图)即选择区分度高的特征子集。
那么, 从特征选择角度来看决策树,决策树就是嵌入型特征选择技术
同时,决策树也是机器学习中经典分类器算法,通过决策路径,最终能确定实例属于哪一类别。
那么, 从分类器角度来看决策树,决策树就是树型结构的分类模型
从人工智能知识表示法角度来看,决策树类似于if-then的产生式表示法。
那么, 从知识表示角度来看决策树,决策树就是if-then规则的集合
由上面的例子可知,麻鸡银行通过决策树模型来决定给哪些人贷款,这样决定贷款的流程就是固定的,而不由人的主观情感来决定。
那么, 从使用者角度来看决策树,决策树就是规范流程的方法
最后我们再来看看决策树的本质是什么已经不重要了。
决策树好像是一种思想,而通过应用在分类任务中从而成就了“决策树算法”。
下面内容还是继续讲解用于分类的“决策树算法”。
前面讲了决策树是一种 特征选择技术 。
既然决策树就是一种特征选择的方法,那么经典决策树算法其实就是使用了不同的特征选择方案。
如:
(1)ID3:使用信息增益作为特征选择
(2)C4.5:使用信息增益率作为特征选择
(3)CART:使用GINI系数作为特征选择
具体选择的方法网上一大把,在这里我提供几个链接,不细讲。
但,不仅仅如此。
决策树作为嵌入型特征选择技术结合了特征选择和分类算法,根据特征选择如何生成分类模型也是决策树的一部分。
其生成过程基本如下:
根据这三个步骤,可以确定决策树由:(1)特征选择;(2)生成方法;(3)剪枝,组成。
决策树中学习算法与特征选择的关系如下图所示:
原始特征集合T:就是包含收集到的原始数据所有的特征,例如:麻瓜银行收集到与是否具有偿还能力的所有特征,如:是否结婚、是否拥有100w的房产、是否拥有汽车、是否有小孩、月收入是否>10k等等。
中间的虚线框就是特征选择过程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系数。
其中评价指标(如:信息增益)就是对特征的要求,特征需要满足这种条件(一般是某个阈值),才能被选择,而这一选择过程嵌入在学习算法中,最终被选择的特征子集也归到学习算法中去。
这就是抽象的决策树生成过程,不论哪种算法都是将这一抽象过程的具体化。
其具体算法我将留在下一篇文章来讲解。
而决策树的剪枝,其实用得不是很多,因为很多情况下随机森林能解决决策树带来的过拟合问题,因此在这里也不讲了。
决策树的优化主要也是围绕决策树生成过程的三个步骤来进行优化的。
树型结构,可想而知,算法效率决定于树的深度,优化这方面主要从特征选择方向上优化。
提高分类性能是最重要的优化目标,其主要也是特征选择。
面对过拟合问题,一般使用剪枝来优化,如:李国和基于决策树生成及剪枝的数据集优化及其应用。
同时,决策树有很多不足,如:多值偏向、计算效率低下、对数据空缺较为敏感等,这方面的优化也有很多,大部分也是特征选择方向,如:陈沛玲使用粗糙集进行特征降维。
由此,决策树的优化方向大多都是特征选择方向,像ID3、C4.5、CART都是基于特征选择进行优化。
参考文献
统计学习方法-李航
特征选择方法综述-李郅琴
决策树分类算法优化研究_陈沛玲
基于决策树生成及剪枝的数据集优化及其应用-李国和
‘陆’ 决策树的训练复杂度
并不是很复杂。
决策树模型因为其特征预处理简单、易于集成学习、良好的拟合能力及解释性,是应用最广泛的机器学习模型之一。
决策树算法在决策领域有着广泛的应用,比如个人决策、公司管理决策等。算法逻辑模型以“树形结构”呈现,因此它比较容易理解,并不是很复杂,我们可以清楚地掌握分类过程中的每一个细节。
控制决策树的复杂度:
若所有叶结点都是纯的,模型过于复杂,训练集拟合度过高,出现过拟合。
两种方法防治过拟合:
预剪枝:限制树的生长到某一次停止。限制树的最大深度、叶结点的最大数目…
后剪枝:生成纯树以后把信息少的结点删掉。
常见决策树分类算法
1、CLS算法
最原始的决策树分类算法,基本流程是,从一棵空数出发,不断地从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
2、ID3算法
对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。
ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3、C4.5算法
基于ID3算法的改进,主要包括:
使用信息增益率替换了信息增益下降度作为属性选择的标准。
在决策树构造的同时进行剪枝操作。
避免了树的过度拟合情况。
可以对不完整属性和连续型数据进行处理。
使用k交叉验证降低了计算复杂度。
针对数据构成形式,提升了算法的普适性。
4、SLIQ算法
该算法具有高可扩展性和高可伸缩性特质,适合对大型数据集进行处理。
5、CART算法
CART是一种基于二分递归分割技术的算法。该算法是将当前的样本集,分为两个样本子集,这样做就使得每一个非叶子节点最多只有两个分支。因此,使用CART算法所建立的决策树是一棵二叉树,树的结构简单,与其它决策树算法相比,由该算法生成的决策树模型分类规则较少。
‘柒’ 常见决策树分类算法都有哪些
在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法
C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法
CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法
ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点
ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想
根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。
在这篇文章中我们给大家介绍了决策树分类算法的具体内容,包括有很多种算法。从中我们不难发现决策树的算法都是经过不不断的改造趋于成熟的。所以说,机器学习的发展在某种程度上就是由于这些算法的进步而来的。
‘捌’ 机器学习一般常用的算法有哪些
机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。
一、线性回归
一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。
二、Logistic 回归
它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
三、线性判别分析(LDA)
在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
四、决策树
决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
五、朴素贝叶斯
其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。
六、K近邻算法
K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。
七、Boosting 和 AdaBoost
首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。
八、学习向量量化算法(简称 LVQ)
学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求
‘玖’ 机器学习故事汇-决策树算法
机器学习故事汇-决策树算法
【咱们的目标】系列算法讲解旨在用最简单易懂的故事情节帮助大家掌握晦涩无趣的机器学习,适合对数学很头疼的同学们,小板凳走起!
决策树模型是机器学习中最经典的算法之一啦,用途之广泛我就不多吹啦,其实很多机器学习算法都是以树模型为基础的,比如随机森林,Xgboost等一听起来就是很牛逼的算法(其实用起来也很牛逼)。
首先我们来看一下在上面的例子中我想根据人的年龄和性别(两个特征)对5个人(样本数据)进行决策,看看他们喜不喜欢玩电脑游戏。首先根据年龄(根节点)进行了一次分支决策,又对左节点根据性别进行了一次分支决策,这样所有的样本都落到了最终的叶子节点,可以把每一个叶子节点当成我们最终的决策结果(比如Y代表喜欢玩游戏,N代表不喜欢玩游戏)。这样我们就通过决策树完成了非常简单的分类任务!
再来看一下树的组成,主要结构有根节点(数据来了之后首先进行判断的特征),非叶子节点(中间的一系列过程),叶子节点(最终的结果),这些都是我们要建立的模块!
在决策中树中,我们刚才的喜欢玩电脑游戏的任务看起来很简单嘛,从上往下去走不就OK了吗!但是难点在于我们该如何构造这棵决策树(节点的选择以及切分),这个看起来就有些难了,因为当我们手里的数据特征比较多的时候就该犹豫了,到底拿谁当成是根节点呢?
这个就是我们最主要的问题啦,节点究竟该怎么选呢?不同的位置又有什么影响?怎么对特征进行切分呢?一些到这,我突然想起来一个段子,咱们来乐呵乐呵!
武林外传中这个段子够我笑一年的,其实咱们在推导机器学习算法的时候,也需要这么去想想,只有每一步都是有意义的我们才会选择去使用它。回归正题,我们选择的根节点其实意味着它的重要程度是最大的,相当于大当家了,因为它会对数据进行第一次切分,我们需要把最重要的用在最关键的位置,在决策树算法中,为了使得算法能够高效的进行,那么一开始就应当使用最有价值的特征。
接下来咱们就得唠唠如何选择大当家了,我们提出了一个概念叫做熵(不是我提出的。。。穿山甲说的),这里并不打算说的那么复杂,一句话解释一下,熵代表你经过一次分支之后分类的效果的好坏,如果一次分支决策后都属于一个类别(理想情况下,也是我们的目标)这时候我们认为效果很好嘛,那熵值就很低。如果分支决策后效果很差,什么类别都有,那么熵值就会很高,公式已经给出,log函数推荐大家自己画一下,然后看看概率[0,1]上的时候log函数值的大小(你会豁然开朗的)。
不确定性什么时候最大呢?模棱两可的的时候(就是你犹豫不决的时候)这个时候熵是最大的,因为什么类别出现的可能性都有。那么我们该怎么选大当家呢?(根节点的特征)当然是希望经过大当家决策后,熵值能够下降(意味着类别更纯净了,不那么混乱了)。在这里我们提出了一个词叫做信息增益(就当是我提出的吧。。。),信息增益表示经过一次决策后整个分类后的数据的熵值下降的大小,我们希望下降越多越好,理想情况下最纯净的熵是等于零的。
一个栗子:准备一天一个哥们打球的时候,包括了4个特征(都是环境因素)以及他最终有木有去打球的数据。
第一个问题:大当家该怎么选?也就是我们的根节点用哪个特征呢?
一共有4个特征,看起来好像用谁都可以呀,这个时候就该比试比试了,看看谁的能力强(使得熵值能够下降的最多)
在历史数据中,首先我们可以算出来当前的熵值,计算公式同上等于0.940,大当家的竞选我们逐一来分析,先看outlook这个特征,上图给出了基于天气的划分之后的熵值,计算方式依旧同上,比如outlook=sunny时,yes有2个,no有三个这个时候熵就直接将2/5和3/5带入公式就好啦。最终算出来了3种情况下的熵值。
再继续来看!outlook取不同情况的概率也是不一样的,这个是可以计算出来的相当于先验概率了,直接可以统计出来的,这个也需要考虑进来的。然后outlook竞选大当家的分值就出来啦(就是信息增益)等于0.247。同样的方法其余3个特征的信息增益照样都可以计算出来,谁的信息增益多我们就认为谁是我们的大当家,这样就完成了根节点的选择,接下来二当家以此类推就可以了!
我们刚才给大家讲解的是经典的ID3算法,基于熵值来构造决策树,现在已经有很多改进,比如信息增益率和CART树。简单来说一下信息增益率吧,我们再来考虑另外一个因素,如果把数据的样本编号当成一个特征,那么这个特征必然会使得所有数据完全分的开,因为一个样本只对应于一个ID,这样的熵值都是等于零的,所以为了解决这类特征引入了信息增益率,不光要考虑信息增益还要考虑特征自身的熵值。说白了就是用 信息增益/自身的熵值 来当做信息增益率。
我们刚才讨论的例子中使用的是离散型的数据,那连续值的数据咋办呢?通常我们都用二分法来逐一遍历来找到最合适的切分点!
下面再来唠一唠决策树中的剪枝任务,为啥要剪枝呢?树不是好好的吗,剪个毛线啊!这个就是机器学习中老生常谈的一个问题了,过拟合的风险,说白了就是如果一个树足够庞大,那么所有叶子节点可能只是一个数据点(无限制的切分下去),这样会使得我们的模型泛化能力很差,在测试集上没办法表现出应有的水平,所以我们要限制决策树的大小,不能让枝叶太庞大了。
最常用的剪枝策略有两种:
(1)预剪枝:边建立决策树边开始剪枝的操作
(2)后剪枝:建立完之后根据一定的策略来修建
这些就是我们的决策树算法啦,其实还蛮好的理解的,从上到下基于一种选择标准(熵,GINI系数)来找到最合适的当家的就可以啦!
‘拾’ 决策树算法总结
目录
一、决策树算法思想
二、决策树学习本质
三、总结
一、决策树(decision tree)算法思想:
决策树是一种基本的分类与回归方法。本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。 它可以看做是if-then的条件集合,也可以认为是定义在特征空间与类空间上的条件概率分布 。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点,内部结点表示一个特征或属性,叶结点表示一个类。(椭圆表示内部结点,方块表示叶结点)
决策树与if-then规则的关系
决策树可以看做是多个if-then规则的集合。将决策树转换成if-then规则的过程是:由决策树的根结点到叶结点的每一条路径构建一条规则;路径上的内部结点的特征对应着规则的条件,而叶结点的类对应着规则的结论。决策树的路径或其对应的if-then规则集合具有一个重要的性质:互斥且完备。这就是说,每一个实例都被一条路径或一条规则所覆盖,且只被一条路径或一条规则所覆盖。这里的覆盖是指实例的特征与路径上的特征一致或实例满足规则的条件。
决策树与条件概率分布的关系
决策树还表示给定特征条件下类的条件概率分布。这一条件概率分布定义在特征空间的一个划分上。将特征空间划分为互不相交的单元或区域,并在每个单元定义一个类的概率分布,就构成一个条件概率分布。决策树的一条路径对应于划分中的一个单元。决策树所表示的条件概率分布由各个单元给定条件下类的条件概率分布组成。
决策树模型的优点
决策树模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化原则建立决策树模型;预测时,对新的数据,利用决策树模型进行分类 。
二、决策树学习本质:
决策树学习是从训练数据集中归纳一组分类规则、与训练数据集不相矛盾的决策树可能有多个,也可能一个没有。我们需要训练一个与训练数据矛盾较小的决策树,同时具有很好的泛化能力。从另一个角度看 决策树学习是训练数据集估计条件概率模型 。基于特征空间划分的类的条件概率模型有无穷多个。我们选择的条件概率模型应该是不仅对训练数据有很好的拟合,而且对未知数据有很好的预测。 决策树的学习使用损失函数表示这一目标,通常的损失函数是正则化的极大似然函数。决策树的学习策略是以损失函数为目标函数的最小化。当损失函数确定后,决策树学习问题变为损失函数意义下选择最优决策树的问题。这一过程通常是一个递归选择最优特征,并根据特征对训练数据进行分割,使得对各个子数据集有一个最好分类的过程。这一过程对应着特征选择、决策树的生成、决策树的剪枝。
特征选择 : 在于选择对训练数据具有分类能力的特征,这样可以提高决策树的学习效率。
决策树的生成 : 根据不同特征作为根结点,划分不同子结点构成不同的决策树。
决策树的选择 :哪种特征作为根结点的决策树信息增益值最大,作为最终的决策树(最佳分类特征)。
信息熵 : 在信息论与概率统计中,熵是表示随机变量不确定性的度量。设X是一个取有限个值的离散随机变量,其概率分布为P(X= ) = ,i=1,2,3...n,则随机变量X的熵定义为
H(X) = — ,0 <= H(X) <= 1,熵越大,随机变量的不确定性就越大。
条件熵(Y|X) : 表示在已知随机变量X的条件下随机变量Y的不确定性。
信息增益 : 表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。
信息增益 = 信息熵(父结点熵 ) — 条件熵(子结点加权熵)
三、 总结 :
优点
1、可解释性高,能处理非线性的数据,不需要做数据归一化,对数据分布没有偏好。
2、可用于特征工程,特征选择。
3、可转化为规则引擎。
缺点
1、启发式生成,不是最优解。
2、容易过拟合。
3、微小的数据改变会改变整个数的形状。
4、对类别不平衡的数据不友好。