⑴ 什么是广度优先搜索
宽度优先,搜索算法是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,在说单元最短路径算法和论文最小生成数算用了和宽度优先搜索类似的思想,他并不考虑结果的可能位置,彻底的搜索整张图,直到找到结果为止
⑵ 深度优先搜索法和广度优先搜索法
深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的结点,如果它还有以此为起点而未搜过的边,就沿着边继续搜索下去。当结点v的所有边都已被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个过程反复进行直到所有结点都被发现为止。
深度优先搜索基本算法如下{递归算法}:
PROCEDURE dfs_try(i);
FOR i:=1 to maxr DO
BEGIN
IF 子结点 mr 符合条件 THEN
BEGIN
产生的子结点mr入栈;
IF 子结点mr是目标结点
THEN 输出
ELSE dfs_try(i+1);
栈顶元素出栈;
END;
END; 宽度优先搜索算法(又称广度优先搜索算法)是最简单的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijksta单源最短路径算法和Prim最小生成树算法都采用了与宽度优先搜索类似的思想。
宽度优先搜索的核心思想是:从初始结点开始,应用算符生成第一层结点,检查目标结点是否在这些后继结点中,若没有,再用产生式规则将所有第一层的结点逐一扩展,得到第二层结点,并逐一检查第二层结点中是否包含目标结点。若没有,再用算符逐一扩展第二层所有结点……,如此依次扩展,直到发现目标结点为止。
宽度优先搜索基本算法如下:
list[1]:=source; {加入初始结点,list为待扩展结点的表}
head:=0; {队首指针}
foot:=1; {队尾指针}
REPEAT
head:=head+1;
FOR x:=1 to 规则数 DO
BEGIN
根据规则产生新结点nw;
IF not_appear(nw,list) THEN {若新结点队列中不存在,则加到队尾}
BEGIN
foot:=foot+1;
list[foot]:=nw;
list[foot].father:=head;
IF list[foot]=目标结点 THEN 输出;
END;
END;
UNTIL head>foot; {队列为空表明再无结点可扩展}
⑶ 什么是宽度优先搜索,它的主要特征是
关于宽度优先搜索的具体介绍如下,仅供参考,希望对你有帮助!
1.宽度优先搜索算法(又称广度优先搜索算法)是最简单的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijksta单源最短路径算法和Prim最小生成树算法都采用了与宽度优先搜索类似的思想。
2.宽度优先搜索的核心思想是:从初始结点开始,应用算符生成第一层结点,检查目标结点是否在这些后继结点中,若没有,再用产生式规则将所有第一层的结点逐一扩展,得到第二层结点,并逐一检查第二层结点中是否包含目标结点。若没有,再用算符逐一扩展第二层所有结点……,如此依次扩展,直到发现目标结点为止 。
3.另外它也叫广度优先搜索算法,英语:Breadth-First-Search,缩写为BFS,也译作宽度优先搜索,或横向优先搜索,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。
⑷ 常见算法5、广度优先搜索 Breadth-First Search
1、定义
广度优先搜索 (Breadth-First Search)是最简便的图的搜索算法之一,又称 宽度优先搜索 ,这一算法也是很多重要的图算法的原型。广度优先搜索属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
2、应用
广度优先搜索被用于解决 最短路径问题(shortest-path problem) 。
广度优先搜索让你能够找出两样东西之间的最短距离,不过最短距离的含义有很多!使用广度优先搜索可以:
3、图简介
既然广度优先搜索是作用于图的一种算法,这里对图作一个简单的介绍,先不深入了解。
图由 节点 和 边 组成。一个节点可能与多个节点相连,这些节点被称为邻居。
广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即
广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形。
例:假如你需要在你的人际关系网中寻找是否有职业为医生的人,图如下:
而使用广度优先搜索工作原理大概如下 :
1、Python 3 :
2、php :
1、《算法图解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue类: https://www.php.net/manual/zh/class.splqueue.php
⑸ 深度优先和广度优先 的区别 ,用法。
1、主体区别
深度优先搜索是一种在开发爬虫早期使用较多的方法。它的目的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML文件)。
宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
2、算法区别
深度优先搜索是每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱,找到所要找的元素时结束程序。
广度优先搜索是每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱,找到所要找的元素时结束程序。
3、用法
广度优先属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
深度优先即在搜索其余的超链结果之前必须先完整地搜索单独的一条链。深度优先搜索沿着HTML文件上的超链走到不能再深入为止,然后返回到某一个HTML文件,再继续选择该HTML文件中的其他超链。
(5)广度有限搜索算法的原理扩展阅读:
实际应用
BFS在求解最短路径或者最短步数上有很多的应用,应用最多的是在走迷宫上,单独写代码有点泛化,取来自九度1335闯迷宫一例说明,并给出C++/Java的具体实现。
在一个n*n的矩阵里走,从原点(0,0)开始走到终点(n-1,n-1),只能上下左右4个方向走,只能在给定的矩阵里走,求最短步数。n*n是01矩阵,0代表该格子没有障碍,为1表示有障碍物。
int mazeArr[maxn][maxn]; //表示的是01矩阵int stepArr = {{-1,0},{1,0},{0,-1},{0,1}}; //表示上下左右4个方向,int visit[maxn][maxn]; //表示该点是否被访问过,防止回溯,回溯很耗时。核心代码。基本上所有的BFS问题都可以使用类似的代码来解决。
⑹ bfs算法是什么
广度优先搜索算法(英语:Breadth-First Search,缩写为BFS),又译作宽度优先搜索,或横向优先搜索,是一种图形搜索算法。
简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。
作法
BFS是一种暴力搜索算法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能地址,彻底地搜索整张图,直到找到结果为止。BFS并不使用经验法则算法。
从算法的观点,所有因为展开节点而得到的子节点都会被加进一个先进先出的队列中。
一般的实现里,其邻居节点尚未被检验过的节点会被放置在一个被称为open的容器中(例如队列或是链表),而被检验过的节点则被放置在被称为closed的容器中。
(6)广度有限搜索算法的原理扩展阅读:
广度优先搜索算法的应用
广度优先搜索算法能用来解决图论中的许多问题,例如:
1、查找图中所有连接组件(ConnectedComponent)。一个连接组件是图中的最大相连子图。
2、查找连接组件中的所有节点。
3、查找非加权图中任两点的最短路径。
4、测试一图是否为二分图。
5、(Reverse)Cuthill–McKee算法
⑺ 详细介绍广度优先搜索的实现,原理,c++程序
宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
已知图G=(V,E)和一个源顶点s,宽度优先搜索以一种系统的方式探寻G的边,从而“发现”s所能到达的所有顶点,并计算s到所有这些顶点的距离(最少边数),该算法同时能生成一棵根为s且包括所有可达顶点的宽度优先树。对从s可达的任意顶点v,宽度优先树中从s到v的路径对应于图G中从s到v的最短路径,即包含最小边数的路径。该算法对有向图和无向图同样适用。
之所以称之为宽度优先算法,是因为算法自始至终一直通过已找到和未找到顶点之间的边界向外扩展,就是说,算法首先搜索和s距离为k的所有顶点,然后再去搜索和S距离为k+l的其他顶点。
为了保持搜索的轨迹,宽度优先搜索为每个顶点着色:白色、灰色或黑色。算法开始前所有顶点都是白色,随着搜索的进行,各顶点会逐渐变成灰色,然后成为黑色。在搜索中第一次碰到一顶点时,我们说该顶点被发现,此时该顶点变为非白色顶点。因此,灰色和黑色顶点都已被发现,但是,宽度优先搜索算法对它们加以区分以保证搜索以宽度优先的方式执行。若(u,v)∈E且顶点u为黑色,那么顶点v要么是灰色,要么是黑色,就是说,所有和黑色顶点邻接的顶点都已被发现。灰色顶点可以与一些白色顶点相邻接,它们代表着已找到和未找到顶点之间的边界。
在宽度优先搜索过程中建立了一棵宽度优先树,起始时只包含根节点,即源顶点s.在扫描已发现顶点u的邻接表的过程中每发现一个白色顶点v,该顶点v及边(u,v)就被添加到树中。在宽度优先树中,我们称结点u 是结点v的先辈或父母结点。因为一个结点至多只能被发现一次,因此它最多只能有--个父母结点。相对根结点来说祖先和后裔关系的定义和通常一样:如果u处于树中从根s到结点v的路径中,那么u称为v的祖先,v是u的后裔。
⑻ 广度优先搜索怎么保证最优解啊(新手不懂,求指导)
尽可能广的遍历图的结点,类似于树的层序遍历。遍历顺序不唯一,但确定的遍历顺序,对应确定的生成树。
⑼ 广度优先搜索有什么难点
广度优先搜索难点在于每一种算法的不同,树的遍历。
扩展知识:
广度优先搜索算法又译作宽度优先搜索,或横向优先搜索,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。
广度优先搜索算法主要有四个特性:
空间复杂度:由于对空间的大量需求,因此BFS并不适合解非常大的问题,对于类似的问题,应用IDDFS已达节省空间的效果。
时间复杂度:最差情形下,BFS必须查找所有到可能节点的所有路径。
完全性:广度优先搜索算法具有完全性。这意指无论图形的种类如何,只要目标存在,则BFS一定会找到。然而,若目标不存在,且图为无限大,则BFS将不收敛(不会结束)。
最佳解:若所有边的长度相等,广度优先搜索算法是最佳解——亦即它找到的第一个解,距离根节点的边数目一定最少;但对一般的图来说,BFS并不一定回传最佳解。
⑽ 关于广度优先搜索算法
广度优先搜索算法,是按层遍历各个结点,以求出最短或最优的解,
常用于计算路径的最短距离,和最佳通路。
例如:迷宫的最短路径计算,推箱子的移动最小步数等小游戏,都是按广度搜索来进行的。
这个算法是教程中很经典的,有很多例子和代码。你可以好好研究!
如下是一段迷宫的最佳路径求解算法。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int dx[4]={-1,0,1,0};
const int dy[4]={0,1,0,-1};
int maze[5][5],prev[5][5];
int que[32];
int qn;
void print(int x,int y)
{
if(prev[x][y]!=-2)
{
print(prev[x][y]>>3,prev[x][y]&7);
}
printf("(%d, %d)\n",x,y);
}
int main()
{
int i,j,cx,cy,nx,ny;
for(i=0;i<5;i++)
{
for(j=0;j<5;j++)
{
scanf("%d",&maze[i][j]);
}
}
memset(prev,-1,sizeof(prev));
prev[0][0]=-2;
que[0]=0;
qn=1;
for(i=0;i<qn;i++)
{
cx=que[i]>>3;
cy=que[i]&7;
for(j=0;j<4;j++)
{
nx=cx+dx[j];
ny=cy+dy[j];
if((nx>=0)&&(nx<5)&&(ny>=0)&&(ny<5)&&(maze[nx][ny]==0)&&(prev[nx][ny]==-1))
{
prev[nx][ny]=(cx<<3)|cy;
que[qn++]=(nx<<3)|ny;
if((nx==4)&&(ny==4))
{
print(nx,ny);
return 0;
}
}
}
}
return 0;
}