导航:首页 > 源码编译 > 蚁群算法任务分配

蚁群算法任务分配

发布时间:2023-01-07 16:30:52

Ⅰ 科学家如何把蚂蚁的信息素转换为数学公式

看样子楼主已经知道了信息素这个概念,在此我也不赘述了。

目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。

关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W为所有点的集合

为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。

组合优化很有意思的,像禁忌搜索、模拟退火、蚁群算法、遗传算法、神经网络这些算法能够解决很多生活中的实际问题,楼主有空可以招本书看看。

Ⅱ 蚁群算法求解TSP问题的源程序及简要说明

该程序试图对具有31个城市的VRP进行求解,已知的最优解为784.1,我用该程序只能优化到810左右,应该是陷入局部最优,但我不知问题出在什么地方。请用过蚁群算法的高手指教。
蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解

%
%
% the procere of ant colony algorithm for VRP
%
% % % % % % % % % % %

%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);

m=31; % 蚂蚁数
alpha=1;
belta=4;% 决定tao和miu重要性的参数
lmda=0;
rou=0.9; %衰减系数
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 蚂蚁循环一周所释放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 车辆容量
vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数
V=40;

% 计算两点的距离
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;

%给tao miu赋初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;

for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;

best_cost=10000;
for n_gen=1:50;

print_head(n_gen);

for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由蚂蚁产生的路径数量
M_vehicle=500;
t=0; %最佳路径数组的元素数为0

while sumload<=QV;

for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;

fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);

p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;

old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;

tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新

sumload=sumload+g(cur_pos(i));

nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;

if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;

if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','当前的用户需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);

% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);

for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;

sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;

end;
end;

if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%将路径的最后1位补1

% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);

for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;

cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度

for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;

if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 产生最小费用的代数
best_ant=i; %产生最小费用的蚂蚁
best_solution=temp;
end;

if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;

for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;

fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);
fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最终路径是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;

end;
end;
我现在也在研究它,希望能共同进步.建义可以看一下段海滨的关于蚁群算法的书.讲的不错,李士勇的也可以,还有一本我在图书馆见过,记不得名字了.

Ⅲ 如何将蚁群算法植入cloudsim作为资源调度策略

cloudsim是澳大利亚墨尔本大学的网格实验室和Gridbus项目宣布推出的云计算仿真软件。
主要类的介绍:
主要过程:
①初始化一些值。
②创建数据中心,本实验中为两个数据中心:
DataCenter Mydatacenter_0 = createDatacenter(“MyDatacenter_0”);
DataCenter Mydatacenter_1 = createDatacenter(“MyDatacenter_1”);

③创建数据中心的代理业务:
DatacenterBroker broker = createBroker();
Int brokerId = broker.get_id();//获取代理的ID:
④创建虚拟机列表:


Private static VirtualMachineList cerateVm(int userID,int vms)
{
VirtualMachineList list = new VirtualMachineList();

//VM 一些基本参数
Long size = 10000;

Int vcpus = 1;

Int priority = 1;
String vmm = “bingchean”;//my name
//创建一个虚拟机列表数组
VirtualMachineList[] Myvm = new VirtualMachineList[vms];
For(int i = 0;i < vms;i++)
{
Vm[i] = new VirtualMachine
(new VMCharacteristics(i,usersID,size,memory,bw,vcpus,priority,
vmm,new TimeSharedVMScheler()));
//将每个创建好的虚拟机放入列表
List.add(vm[i]);
}
Return list;}

//创建15个虚拟机.
vmlist = createVM(brokerID,15);

//创建40个任务
cloudletlist = createCloudletlist(brokerId,40);

⑤提交任务列表和虚拟机列表
Broker.submitVMList(vmlist);
Broker.submitCloudletList(cloudletlist);

⑥开始仿真.
GridSim.startGridSimulation();
CloudletList newList = broker.getCloudletList();

⑦仿真结束,停止实验,打印结果.
GridSim.stop GridSimulation();
printCloudletList(newList);

⑧打印每个数据中心的dept值.
Mydatacenter_0.printDepts();
Mydatacenter_1.printDepts();

实验里运用蚁群算法对资源分配,和普通的没使用蚁群算法的随机算法进行资源分配的实验进行了对比。创建了两个数据中心,15个虚拟机,分别执行20,30,40,50,60个任务,上图中选取的是执行40个任务时的状态.最后是通过QoS标准对交付给用户的服务进行评判.
结果:


。。。。。太长

(4*40 + 11*80 + 3*60 + 2*160) / 15 = 102.67

(16*80 + 6*120 + 8*160) / 15 = 218.67

(4*80+24*120+12*240) / 15 = 405.33

(12*120 + 16*160 + 9*180 + 9*240 + 4*320) / 15 = 601.33

(32*160 + 12*240 + 16*320) / 15 = 874.67
----------------------------------------------------------------------------------------------------------------

Qos中约束条件可以表述为:


要最终寻找的路径要保证最短,且保证T(R)要最小,在图G中寻找的范围约束条件为满足上式中的ABC.这样做就可以保证云计算在资源分配策略上满足QoS标准.

Ⅳ 蚁群算法及其应用实例

       蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种对自然界蚂蚁的寻径方式进行模拟而得到的一种仿生算法,是一种用来在图中寻找优化路径的机率型算法。
       蚂蚁在运动过程中,可以在行走的路径上留下信息素,后来的蚂蚁可以感知到信息素的存在,信息素浓度越高的路径越容易被后来的蚂蚁选择,从而形成一种正反馈现象。
       它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。这也就是着名的旅行商问题(Traveling Saleman Problem,TSP)。

       若蚂蚁从A点出发到D点觅食,它可以随机从ABD或ACD中选择一条路。假设初始时为每条路分配一只蚂蚁,每个时间单位行走一步,则经过8个时间单位后,情形如下图所示:ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。

       那么,再过8个时间单位,很容易可以得到下列情形:ABD路线的蚂蚁回到A点,ACD路线的蚂蚁到达D点。

α 代表信息素量对是否选择当前路径的影响程度,反映了蚁群在路径搜索中随机性因素作用的强度。
α 越大,蚂蚁选择以前走过的路径的可能性越大,搜索的随机性就会减弱。
α 过小,会导致蚁群搜索过早陷入局部最优,取值范围通常为[1,4]。

β 反映了启发式信息在指导蚁群搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度。
β 过大,虽然收敛速度加快,但是易陷入局部最优。
β 过小,蚁群易陷入纯粹的随机搜索,很难找到最优解。通常取[0,5]。

ρ 反映了信息素的蒸发程度,相反,1-ρ 表示信息素的保留水平
ρ 过大,信息素会发过快,容易导致最优路径被排除。
ρ 过小,各路径上信息素含量差别过小,以前搜索过的路径被在此选择的可能性过大,会影响算法的随机性和全局搜索能力。通常取[0.2,0.5]。

m过大,每条路径上信息素趋于平均,正反馈作用减弱,从而导致收敛速度减慢。
m过小,可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低

总信息量Q对算法性能的影响有赖于αβρ的选取,以及算法模型的选择。
Q对ant-cycle模型蚁群算法的性能没有明显影响,不必特别考虑,可任意选取。

Ⅳ 基于蚁群算法的工作流任务调度算法与CloudSim仿真

你这个解决了吗,我毕设也做这个,能不能共享一下代码

Ⅵ 蚁群优化算法的使用-编码的问题!

“蚁群算法”学习包下载

下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)

近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。

如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。

以下是文件列表,全是 PDF 格式的:

基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统

Ⅶ 英语翻译2

AADCS算法原理
AADCS algorithm principle
本算法在传统蚁群算法的基础之上进行改进,根据浓度较高的信息素来吸引后面的蚂蚁,如果路径上的信息素浓度越高,更多蚂蚁就会选择该路径,从而得到一条从出发点到目的地之间的最短路径,该路径就是全局最优解。正是由于蚂蚁优质的寻优能力,适用在云计算任务的分配算法,许多的学者利用该算法解决了复杂的NP问题
This algorithm is improved on the basis of the traditional ant colony algorithm, according to the high concentration of pheromone to attract the ants behind, if the path pheromone concentration is higher, more ants will choose the path, to get the shortest path between a starting point to the destination path, the path is the global optimal solution. It is because of the ant quality optimization ability, suitable for cloud computing task allocation algorithm, many scholars use this algorithm to solve the complex NP problem
在进行虚拟机资源分配算法中,虚拟机表示为X ,任务分解成Y个子任务,子任务表示为X ,在每个时刻,子任务只能在一个虚拟机上执行 ,配合蚁群算法公式计算得到每个虚拟机被某一个任务选中的概率为A
In the virtual machine resource allocation algorithm, the virtual machine is expressed as X, task decomposition into Y sub task, sub task is expressed as X, in every moment, the sub task can only be performed in a virtual machine, calculate the probability of each virtual machine is a task for the selected A formula with ant colony algorithm
B表示期望启发权重因子,都是改变路径选择概率的重要因素, 表示在 A时刻节点 B的信息素浓度, A表示信息素启发权重因子, B表示在时刻 路径节点C 到路径节点D 之间的期望值, A表示蚂蚁已走过的路径,将其加入禁忌表, 表示第A 只蚂蚁能够选择的路径,设 A为蚂蚁的当前迭代次数, A为迭代次数最大值。
B said the expected heuristic weighting factors are important factors to change the path selection probability, said at the A moment B node pheromone concentration, A said the information inspired weight factor, B said in a moment path node between C path to node D expectations, A said the ant has been added to the taboo, table A, said the path of ants can choose, let A be the current iteration number of ants, A for the maximum number of iterations.
通过公式(1)可知,影响虚拟机的选择最大的两个因素就是 A和B ,AADCS算法就是通过虚拟机质量函数对信息素的更新进行改进,利用负载均衡差函数进行改进,提高云计算系统的负载均衡度。
By the formula (1) shows that the two factors influencing the selection of virtual machine is the largest A and B, AADCS algorithm is through the virtual machine quality function to the pheromone update is improved by using the load balancing function was improved, improve the load balance of the system of cloud computing.

阅读全文

与蚁群算法任务分配相关的资料

热点内容
单片机继电器驱动 浏览:649
小薯仔编程软件下载 浏览:153
单片机opencv 浏览:255
千锋python人工智能培训 浏览:855
合理的文件夹划分 浏览:258
十点读书app哪里下载 浏览:964
uu跑腿押金上app在哪里解约 浏览:37
华为如何将app移到桌面 浏览:597
阿里安卓面试算法题 浏览:705
语文知识手册pdf 浏览:841
为什么安卓手机oled屏很白很亮 浏览:252
如何找回iphone手机隐藏的app 浏览:21
linuxc多进程 浏览:649
android飞行游戏 浏览:965
数据挖掘常见算法 浏览:135
python单实例化 浏览:351
str中python 浏览:89
java的equals用法 浏览:845
奥维云服务器怎么开通 浏览:171
js取得服务器地址 浏览:812