导航:首页 > 源码编译 > 看涨期权的blackscholes算法

看涨期权的blackscholes算法

发布时间:2023-01-08 00:02:09

A. 布莱克-斯科尔斯期权计价模式是什么模式

布莱克-斯科尔斯定价模型,说到它,学友们是不是有点“才下眉头又上心头”的感觉那一

关于这个模型,我们首先要知道的是它是一个数学博士毕业以后在一种非正常的状态下推导出来的,意思就是你研究也研究不明白,所以就直接记住结论就行了。那么结论是不是很难这就是要说的

第二点,陈华亭老师教导我们越复杂的东西越简单,比如电脑它的构造很复杂,但是我们没有必要知道他是怎么运行的,我们只知道怎么用它进行学习、工作和娱乐就行了,对于这个模型的学习我们就是要抱着这个心态,虽然有点消极但是还不至于自找麻烦。

第三要知道,这个模型与单期模型和风险中性原理的关系:当这两个模型的期数划分无限多就成了布莱克-斯科尔斯定价模型。最后还要知道此模型运用前提是标的股票不派发股利的欧式看涨期权。
了解它的底细就是为了放心的利用它:

1、确定五个参数:股票价格、执行价格、行权日期、无风险利率、股票的波动率
2、计算出d1、d2

3、查表求出N(d1)、N(d2)

4、将结果代入公式,即可对看涨期权定价

最后,是大家最头疼的问题,处理不好会给日后的学习留下阴影的问题——公式的记忆。

B. 如何理解 Black-Scholes 期权定价模型

Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克-斯克尔斯期权定价模型。
1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(Robert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes),同时肯定了布莱克的杰出贡献。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。

C. 关于Black-Scholes期权定价模型中重要参数的问题

可以为负数。

从数学的角度来看,公式里的N(d1),也就是delta,是正态分布的累计概率分布函数。我们知道看涨期权的delta可以取到(0,1)之间的任何值,所以d1可以取到实数轴上的任意值。

例如,一个OTM的看涨期权,它的delta小于0.5,也就是N(d1)小于0.5。对于一个正态分布累计概率分布函数f(x)来说,只有x小于零时f(x)才小于0.5

d2是d1减去一个正数,如果d1本身是负数的话,d2一定是负数。因此d1和d2都可以为负数。

D. 什么是Black-Scholes的期权定价模型

一个广为使用的期权定价模型,获Nobel Prize。
由BlackScholoes和Melton提出的。
具体证明我就不写了你可以去看原始Paper。
简单说一下:
首先,股价随机过程是马氏链(弱式有效)
假设股价收益率服从维纳过程(布朗运动的数学模型)
则衍生品价格为股价的函数。由ito引理可知衍生品价格服从Ito过程(飘移率和方差率是股价的函数)
第二:通过买入和卖空一定数量的衍生证券和标的证券,Blacksholes发现可以建立一个无风险组合。根据有效市场中无风险组合只获得无风险利率。从而得到一个重要的方程: Black-Scholes微分方程。
第三:根据期权或任何衍生品的条约可列出边界条件。带入微分方程可得定价公式

大概是这个过程,不过这是学校里学的,工作以后Bloomberg终端上会自动帮你计算的。
如果OTC结构化产品定价的话,会更熟悉各种边界条件带入微分方程。不止是简单得Call和Put。

另外你可以理解BSM模型为二叉树模型的极限形式(无限阶段二叉树)

E. 如何使用matlab实现Black-Scholes期权定价模型

参考论文 期权定价理论是现代金融学中最为重要的理论之一,也是衍生金融工具定价中最复杂的。本文给出了欧式期权定价过程的一个简单推导,并利用Matlab对定价公式给出了数值算例及比较静态分析,以使读者能更直观地理解期权定价理论。 关键词:Matlab;教学实践 基金项目:国家自然科学基金项目(70971037);教育部人文社科青年项目(12YJCZH128) 中图分类号:F83文献标识码:A 收录日期:2012年4月17日 现代金融学与传统金融学最主要的区别在于其研究由定性分析向定量分析的转变。数理金融学即可认为是现代金融学定量分析分支中最具代表性的一门学科。定量分析必然离不开相应计算软件的应用,Matlab就是一款最为流行的数值计算软件,它将高性能的数值计算和数据图形可视化集成在一起,并提供了大量内置函数,近年来得到了广泛的应用,也为金融定量分析提供了强有力的数学工具。 一、Black-Scholes-Merton期权定价模型 本节先给出B-S-M期权定价模型的简单推导,下节给出B-S-M期权定价模型的Matlab的实现。设股票在时刻t的价格过程S(t)遵循如下的几何Brown运动: dS(t)=mS(t)dt+sS(t)dW(t)(1) 无风险资产价格R(t)服从如下方程: dR(t)=rR(t)dt(2) 其中,r,m,s>0为常量,m为股票的期望回报率,s为股票价格波动率,r为无风险资产收益率且有0<r<m;dW(t)是标准Brown运动。由式(1)可得: lnS(T):F[lnS(t)+(m-s2/2)(T-t),s■](3) 欧式看涨期权是一种合约,它给予合约持有者以预定的价格(敲定价格)在未来某个确定的时间T(到期日)购买一种资产(标的资产)的权力。在风险中性世界里,标的资产为由式(1)所刻画股票,不付红利的欧式看涨期权到期日的期望价值为:■[max(S(T)-X,0)],其中■表示风险中性条件下的期望值。根据风险中性定价原理,不付红利欧式看涨期权价格c等于将此期望值按无风险利率进行贴现后的现值,即: c=e-r(T-1)■[max{S(T)-X,0}](4) 在风险中性世界里,任何资产将只能获得无风险收益率。因此,lnS(T)的分布只要将m换成r即可: lnS(T):F[lnS(t)+(r-s2/2)(T-t),s■](5) 由式(3)-(4)可得欧式看涨期权价格: c=S(t)N(d1)-Xe-r(T-1)N(d2)(6) 这里: d1=■(7) d2=■=d1-s■(8) N(x)为均值为0标准差为1的标准正态分布变量的累积概率分布函数。S(t)为t时刻股票的价格,X为敲定价格,r为无风险利率,T为到期时间。欧式看跌期权也是一种合约,它给予期权持有者以敲定价格X,在到期日卖出标的股票的权力。 下面推导欧式看涨期权c与欧式看跌期权p的联系。考虑两个组合,组合1包括一个看涨期权加上Xe-r(T-1)资金,组合2包含一个看跌期权加上一股股票。于是,在到期时两个组合的价值必然都是: max{X,S(T)}(9) 欧式期权在到期日之前是不允许提前执行的,所以当前两个组合的价值也必相等,于是可得欧式看涨期权与看跌期权之间的平价关系(put-call parity): c+Xe-r(T-t)=p+S(t)(10) 由式(10)可得,不付红利欧式看跌期权的价格为: p=Xe-r(T-t)N(-d2)-S(t)N(-d1)(11) 二、Black-Scholes-Merton模型的Matlab实现 1、欧式期权价格的计算。由式(6)可知,若各参数具体数值都已知,计算不付红利的欧式看涨期权的价格一般可以分为三个步骤:先算出d1,d2,涉及对数函数;其次计算N(d1),N(d2),需要查正态分布表;最后再代入式(6)及式(11)即可得欧式期权价格,涉及指数函数。不过,欧式期权价格的计算可利用Matlab中专有blsprice函数实现,显然更为简单: [call,put]=blsprice(Price,Strike,Rate,Time,Volatility)(12) 只需要将各参数值直接输入即可,下面给出一个算例:设股票t时刻的价格S(t)=20元,敲定价格X=25,无风险利率r=3%,股票的波动率s=10%,到期期限为T-t=1年,则不付红利的欧式看涨及看跌期权价格计算的Matlab实现过程为: 输入命令为:[call,put]= blsprice(20,25,0.03,0.1,1) 输出结果为:call=1.0083put=5.9334 即购买一份标的股票价格过程满足式(1)的不付红利的欧式看涨和看跌期权价格分别为1.0083元和5.9334元。 2、欧式期权价格的比较静态分析。也许纯粹计算欧式期权价格还可以不利用Matlab软件,不过在授课中,教师要讲解期权价格随个参数的变化规律,只看定价公式无法给学生一个直观的感受,此时可利用Matlab数值计算功能及作图功能就能很方便地展示出期权价格的变动规律。下面笔者基于Matlab展示欧式看涨期权价格随各参数变动规律: (1)看涨期权价格股票价格变化规律 输入命令:s=(10∶1∶40);x=25;r=0.03;t=1;v=0.1; c=blsprice(s,x,r,t,v); plot(s,c,'r-.') title('图1看涨期权价格股票价格变化规律'); xlabel('股票价格');ylabel('期权价值');grid on (2)看涨期权价格随时间变化规律 输入命令:s=20;x=25;r=0.03;t=(0.1∶0.1∶2);v=0.1;c=blsprice(s,x,r,t,v); plot(t,c,'r-.') title('图2看涨期权价格随时间变化规律'); xlabel('到期时间');ylabel('期权价值');grid on (3)看涨期权价格随无风险利率变化规律 s=20;x=25;r=(0.01∶0.01∶0.5);t=1;v=0.1;c=blsprice(s,x,r,t,v); plot(r,c,'r-.') title('图3看涨期权价格随无风险利率变化规律'); xlabel('无风险利率');ylabel('期权价值');grid on (4)看涨期权价格随波动率变化规律 s=20;x=25;r=0.03;t=1;v=(0.1∶0.1∶1);c=blsprice(s,x,r,t,v); plot(v,c,'r-.') title('图4看涨期权价格随波动率变化规律'); xlabel('波动率');ylabel('期权价值');grid on (作者单位:南京审计学院数学与统计学院) 主要参考文献: [1]罗琰,杨招军,张维.非完备市场欧式期权无差别定价研究[J].湖南大学学报(自科版),2011.9. [2]罗琰,覃展辉.随机收益流的效用无差别定价[J].重庆工商大学学报(自科版),2011. [3]邓留宝,李柏年,杨桂元.Matlab与金融模型分析[M].合肥工业大学出版社,2007.

F. 根据Black-Scholes公式和看涨看跌期权平价关系怎么推导看跌期权的定价公式

1、看涨期权推导公式:x0dx0aC=S*N(d1)-Ke^(-rT)*N(d2)x0dx0ax0dx0a其中x0dx0ad1=(ln(S/K)+(r+0.5*б^2)*T/бT^(1/2)x0dx0ad2=d1-бT^(1/2)x0dx0ax0dx0aS-------标的当前价格x0dx0aK-------期权的执行价格x0dx0ar -------无风险利率x0dx0aT-------行权价格距离现在到期日(期权剩余的天数/365)x0dx0aN(d)---累计正态分布函数(可查表或通过EXCEL计算)x0dx0aб-------表示波动率(自己设定)x0dx0ax0dx0a2、平价公式x0dx0aC+Ke^(-rT)=P+Sx0dx0ax0dx0a则P=C+Ke^(-rT)-Sx0dx0a =S*N(d1)-S - Ke^(-rT)*N(d2) + Ke^(-rT) x0dx0a =S*[N(d1)-1] + Ke^(-rT)*[1-N(d2)]x0dx0a =Ke^(-rT)*N(-d2) - S*N(-d1)x0dx0ax0dx0a以上纯手工打字,望接纳,谢谢!

G. 什么是black-sholes公式

布莱克-斯科尔斯期权定价模型,用于在给定条件下计算期权价值的。


网络

期权定价模型

期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。

中文名

期权定价模型

简称

OPM

创始人

布莱克与舒尔斯

创立时间

20世纪70年代

目录

1发展历程

2理论前驱

3定价方法

4主要模型

▪B-S模型

▪二项式模型

发展历程

编辑

期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。

在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。

期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。大多从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

1979年,科克斯(Cox)、罗斯(Ross)和卢宾斯坦(Rubinsetein)的论文《期权定价:一种简化方法》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。

理论前驱

1、巴施里耶(Bachelier,1900)

2、斯普伦克莱(Sprenkle,1961)

3、博内斯(Boness,1964)

4、萨缪尔森(Samuelson,1965)

定价方法

(1)Black—Scholes公式

(2)二项式定价方法

(3)风险中性定价方法

(4)鞅定价方法等

主要模型

B-S模型

期权定价模型基于对冲证券组合的思想。投资者可建立期权与其标的股票的组合来保证确定报酬。在均衡时,此确定报酬必须得到无风险利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能获得超额回报(超过与风险相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。[1]

假设条件

1、标的资产价格服从对数正态分布;

2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);

5、该期权是欧式期权,即在期权到期前不可实施。

定价公式

C=S·N(D1)-L·(E^(-γT))*N(D2)

其中:

D1=(Ln(S/L)+(γ+(σ^2)/2)*T)/(σ*T^(1/2))

D2=D1-σ*T^(1/2)

C—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

γ—连续复利计无风险利率H

σ2—年度化方差

N()—正态分布变量的累积概率分布函数,在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为γ0)一般是一年复利一次,而γ要求利率连续复利。γ0必须转化为r方能代入上式计算。两者换算关系为:γ=LN(1+γ0)或γ0=Eγ-1。例如γ0=0.06,则γ=LN(1+0.06)=0583,即100以583%的连续复利投资第二年将获106,该结果与直接用γ0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

推导运用

(一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G]=E[max(ST-L,O)]

其中,E[G]—看涨期权到期期望值ST—到期所交易金融资产的市场价值

L—期权交割(实施)价

到期有两种可能情况:1、如果STL,则期权实施以进帐(In-the-money)生效,且mAx(ST-L,O)=ST-L

2、如果ST<>

max(ST-L,O)=0

从而:E[CT]=P×(E[ST|STL)+(1-P)×O=P×(E[ST|STL]-L)

其中:P—(STL)的概率E[ST|STL]—既定(STL)下ST的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C=P×E-rT×(E[ST|STL]-L)(*)这样期权定价转化为确定P和E[ST|STL]。

首先,

对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(ST)与现价(S)比值的对数值,即收益=1NSTS。由假设1收益服从对数正态分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以证明,相对价格期望值大于EμT,为:E[STS]=EμT+σT22=EμT+σ2T2=EγT从而,μT=T(γ-σ22),且有σT=σT其次,求(STL)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζχ]=1-N(χ-μσ)其中:ζ—正态分布随机变量χ—关键值μ—ζ的期望值σ—ζ的标准差所以:P=Pr06[ST1]=Pr06[1NSTS]1NLS]=1N-1NLS2)TTNC4由对称性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定STL下ST的期望值。因为E[ST|ST]L]处于正态分布的L到∞范围,所以,E[ST|ST]=S EγT N(D1)N(D2)

其中:

D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最后,

将P、E[ST|ST]L]代入(*)式整理得B-S定价模型:C=S N(D1)-L E-γT N(D2)(二)B-S模型应用实例假设市场上某股票现价S为164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:

①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328

②求D2:D2=0.0328-0.29×0.0959=-0.570

③查标准正态分布函数表,得:N(0.03)=0.5120N(-0.06)=0.4761

④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803

因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。

(三)看跌期权定价公式的推导B-S模型是看涨期权的定价公式。

根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:

S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T

移项得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,将B-S模型代入整理得:P=L E-γT [1-N(D2)]-S[1-N(D1)]此即为看跌期权初始价格定价模型。

发展

B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:

C=(S- E-γT N(D1)-L E-γT N(D2)

(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×0.04=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。

在此红利现值为:S(1-E-δT),所以S′=S E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S E-δT N(D1)-L E-γT N(D2)

影响

自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步。

二项式模型

二项式模型的假设主要有:

1、不支付股票红利。

2、交易成本与税收为零。

3、投资者可以以无风险利率拆入或拆出资金。

4、市场无风险利率为常数。

5、股票的波动率为常数。

假设在任何一个给定时间,金融资产的价格以事先规定的比例上升或下降。如果资产价格在时间t的价格为S,它可能在时间t+△t上升至uS或下降至dS。假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价格下降至dS,期权价格也降至Cd。当金融资产只可能达到这两种价格时,这一顺序称为二项程序。

H. 什么是期权定价的BS公式

Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。

B-S-M定价公式
C=S·N(d1)-X·exp(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)

N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

I. 布莱克斯科尔斯期权定价公式

定价公式:C=S·N(D1)-L·(E^(-γT))*N(D2)

其中:

D1=(Ln(S/L)+(γ+(σ^2)/2)*T)/(σ*T^(1/2))

D2=D1-σ*T^(1/2)

C—期权初始合理价格

L—期权交割价格

S—所交易金融资产现价

T—期权有效期

γ—连续复利计无风险利率H

σ2—年度化方差

N()—正态分布变量的累积概率分布函数

(9)看涨期权的blackscholes算法扩展阅读:

理论前驱

1、巴施里耶(Bachelier,1900)

2、斯普伦克莱(Sprenkle,1961)

3、博内斯(Boness,1964)

4、萨缪尔森(Samuelson,1965)

定价方法

(1)Black—Scholes公式

(2)二项式定价方法

(3)风险中性定价方法

(4)鞅定价方法等

阅读全文

与看涨期权的blackscholes算法相关的资料

热点内容
单片机opencv 浏览:255
千锋python人工智能培训 浏览:855
合理的文件夹划分 浏览:258
十点读书app哪里下载 浏览:964
uu跑腿押金上app在哪里解约 浏览:37
华为如何将app移到桌面 浏览:597
阿里安卓面试算法题 浏览:705
语文知识手册pdf 浏览:841
为什么安卓手机oled屏很白很亮 浏览:252
如何找回iphone手机隐藏的app 浏览:21
linuxc多进程 浏览:649
android飞行游戏 浏览:965
数据挖掘常见算法 浏览:135
python单实例化 浏览:351
str中python 浏览:89
java的equals用法 浏览:845
奥维云服务器怎么开通 浏览:171
js取得服务器地址 浏览:812
起点中文网小说缓存在哪个文件夹 浏览:216
java疯狂讲义pdf 浏览:300