导航:首页 > 源码编译 > python二分算法

python二分算法

发布时间:2023-01-08 05:01:20

A. 机器学习中,使用逻辑回归(python)做二分类时,recall,f1_score,support的含义是

假设预测目标为0和1
数据中1的个数为a,预测1的次数为b,预测1命中的次数为c
准确率 precision = c / b
召回率 recall = c / a
f1_score = 2 * precision * recall / (precision + recall)

B. python算法设计的步骤有三步分别是

1. 弄清楚题目的意思,列出题目的输入、输出、约束条件
其中又一道题目是这样的:“有一个mxn的矩阵,每一行从左到右是升序的,每一列从上到下是升序的。请实现一个函数,在矩阵中查找元素elem,找到则返回elem的位置。”题设只说了行和列是升序的,我在草稿纸上画了一个3x4的矩阵,里面的元素是1~12,于是我就想当然的认为矩阵的左上角是最小的元素,右下角是最大的元素。于是整个题目的思考方向就错了。
2. 思考怎样让算法的时间复杂度尽可能的小
继续以上面的题目为例子。可以有如下几种算法:
a. 遍历整个矩阵进行查找,那么复杂度为O(m*n);
b. 因为每一行是有序的,所以可以对每一行进行二分查找,复杂度为O(m*logn)。但是这样只用到了行有序的性质。
c. 网上查了一下,最优的算法是从矩阵的左下角开始,比较左下角的元素(假设为X)与elem的大小,如果elem比X大,那么X所在的那一列元素就都被排除了,因为X是该列中最大的了,比X还大,那么肯定比X上面的都大;如果elem比X小,那么X所在的那一行就可以排除了,因为X是这一行里最小的了,比X还小那么肯定比X右边的都小。每迭代一次,矩阵的尺寸就缩小一行或一列。复杂度为O(max(m,n))。
可以先从复杂度较高的实现方法入手,然后再考虑如何利用题目的特定条件来降低复杂度。
3. 编写伪代码或代码

C. python分治法求二维数组局部峰值方法

python分治法求二维数组局部峰值方法
下面小编就为大家分享一篇python分治法求二维数组局部峰值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
题目的意思大致是在一个n*m的二维数组中,找到一个局部峰值。峰值要求大于相邻的四个元素(数组边界以外视为负无穷),比如最后我们找到峰值A[j][i],则有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]。返回该峰值的坐标和值。
当然,最简单直接的方法就是遍历所有数组元素,判断是否为峰值,时间复杂度为O(n^2)
再优化一点求每一行(列)的最大值,再通过二分法找最大值列的峰值(具体方法可见一维数组求峰值),这种算法时间复杂度为O(logn)
这里讨论的是一种复杂度为O(n)的算法,算法思路分为以下几步:
1、找“田”字。包括外围的四条边和中间横竖两条边(图中绿色部分),比较其大小,找到最大值的位置。(图中的7)

2、找到田字中最大值后,判断它是不是局部峰值,如果是返回该坐标,如果不是,记录找到相邻四个点中最大值坐标。通过该坐标所在的象限缩小范围,继续比较下一个田字

3、当范围缩小到3*3时必定会找到局部峰值(也可能之前就找到了)
关于为什么我们选择的范围内一定存在峰值,大家可以这样想,首先我们有一个圈,我们已知有圈内至少有一个元素大于这个圈所有的元素,那么,是不是这个圈中一定有一个最大值?
可能说得有点绕,但是多想想应该能够理解,也可以用数学的反证法来证明。
算法我们理解后接下来就是代码实现了,这里我用的语言是python(初学python,可能有些用法上不够简洁请见谅),先上代码:
import numpy as np
def max_sit(*n): #返回最大元素的位置
temp = 0
sit = 0
for i in range(len(n)):
if(n[i]>temp):
temp = n[i]
sit = i
return sit
def dp(s1,s2,e1,e2):
m1 = int((e1-s1)/2)+s1 #row
m2 = int((e2-s1)/2)+s2 #col
nub = e1-s1
temp = 0
sit_row = 0
sit_col = 0
for i in range(nub):
t = max_sit(list[s1][s2+i], #第一排
list[m1][s2+i], #中间排
list[e1][s2+i], #最后排
list[s1+i][s2], #第一列
list[s1+i][m2], #中间列
list[s1+i][e2], #最后列
temp)
if(t==6):
pass
elif(t==0):
temp = list[s1][s2+i]
sit_row = s1
sit_col = s2+i
elif(t==1):
temp = list[m1][s2+i]
sit_row = m1
sit_col = s2+i
elif(t==2):
temp = list[e1][s2+i]
sit_row = e1
sit_col = s2+i
elif(t==3):
temp = list[s1+i][s2]
sit_row = s1+i
sit_row = s2
elif(t==4):
temp = list[s1+i][m2]
sit_row = s1+i
sit_col = m2
elif(t==5):
temp = list[s1+i][e2]
sit_row = s1+i
sit_col = m2
t = max_sit(list[sit_row][sit_col], #中
list[sit_row-1][sit_col], #上
list[sit_row+1][sit_col], #下
list[sit_row][sit_col-1], #左
list[sit_row][sit_col+1]) #右
if(t==0):
return [sit_row-1,sit_col-1]
elif(t==1):
sit_row-=1
elif(t==2):
sit_row+=1
elif(t==3):
sit_col-=1
elif(t==4):
sit_col+=1
if(sit_row<m1):
e1 = m1
else:
s1 = m1
if(sit_col<m2):
e2 = m2
else:
s2 = m2
return dp(s1,s2,e1,e2)
f = open("demo.txt","r")
list = f.read()
list = list.split("n") #对行进行切片
list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的围墙
for i in range(len(list)): #对列进行切片
list[i] = list[i].split()
list[i] = ["0"]+list[i]+["0"] #加左右的围墙
list = np.array(list).astype(np.int32)
row_n = len(list)
col_n = len(list[0])
ans_sit = dp(0,0,row_n-1,col_n-1)
print("找到峰值点位于:",ans_sit)
print("该峰值点大小为:",list[ans_sit[0]+1,ans_sit[1]+1])
f.close()

首先我的输入写在txt文本文件里,通过字符串转换变为二维数组,具体转换过程可以看我上一篇博客——python中字符串转换为二维数组。(需要注意的是如果在windows环境中split后的列表没有空尾巴,所以不用加list.pop()这句话)。有的变动是我在二维数组四周加了“0”的围墙。加围墙可以再我们判断峰值的时候不用考虑边界问题。

max_sit(*n)函数用于找到多个值中最大值的位置,返回其位置,python的内构的max函数只能返回最大值,所以还是需要自己写,*n表示不定长参数,因为我需要在比较田和十(判断峰值)都用到这个函数
def max_sit(*n): #返回最大元素的位置
temp = 0
sit = 0
for i in range(len(n)):
if(n[i]>temp):
temp = n[i]
sit = i
return sit
dp(s1,s2,e1,e2)函数中四个参数的分别可看为startx,starty,endx,endy。即我们查找范围左上角和右下角的坐标值。
m1,m2分别是row 和col的中间值,也就是田字的中间。
def dp(s1,s2,e1,e2):
m1 = int((e1-s1)/2)+s1 #row
m2 = int((e2-s1)/2)+s2 #col

依次比较3行3列中的值找到最大值,注意这里要求二维数组为正方形,如果为矩形需要做调整
for i in range(nub):
t = max_sit(list[s1][s2+i], #第一排
list[m1][s2+i], #中间排
list[e1][s2+i], #最后排
list[s1+i][s2], #第一列
list[s1+i][m2], #中间列
list[s1+i][e2], #最后列
temp)
if(t==6):
pass
elif(t==0):
temp = list[s1][s2+i]
sit_row = s1
sit_col = s2+i
elif(t==1):
temp = list[m1][s2+i]
sit_row = m1
sit_col = s2+i
elif(t==2):
temp = list[e1][s2+i]
sit_row = e1
sit_col = s2+i
elif(t==3):
temp = list[s1+i][s2]
sit_row = s1+i
sit_row = s2
elif(t==4):
temp = list[s1+i][m2]
sit_row = s1+i
sit_row = m2
elif(t==5):
temp = list[s1+i][e2]
sit_row = s1+i
sit_row = m2

判断田字中最大值是不是峰值,并找不出相邻最大值
t = max_sit(list[sit_row][sit_col], #中
list[sit_row-1][sit_col], #上
list[sit_row+1][sit_col], #下
list[sit_row][sit_col-1], #左
list[sit_row][sit_col+1]) #右
if(t==0):
return [sit_row-1,sit_col-1]
elif(t==1):
sit_row-=1
elif(t==2):
sit_row+=1
elif(t==3):
sit_col-=1
elif(t==4):
sit_col+=1
缩小范围,递归求解
if(sit_row<m1):
e1 = m1
else:
s1 = m1
if(sit_col<m2):
e2 = m2
else:
s2 = m2

return dp(s1,s2,e1,e2)
好了,到这里代码基本分析完了。如果还有不清楚的地方欢迎下方留言。
除了这种算法外,我也写一种贪心算法来求解这道题,只可惜最坏的情况下算法复杂度还是O(n^2),QAQ。
大体的思路就是从中间位置起找相邻4个点中最大的点,继续把该点来找相邻最大点,最后一定会找到一个峰值点,有兴趣的可以看一下,上代码:
#!/usr/bin/python3
def dp(n):
temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9]) #中 上 左 右 下
sit = temp.index(max(temp))
if(sit==0):
return str[n]
elif(sit==1):
return dp(n-9)
elif(sit==2):
return dp(n-1)
elif(sit==3):
return dp(n+1)
else:
return dp(n+9)
f = open("/home/nancy/桌面/demo.txt","r")
list = f.read()
list = list.replace(" ","").split() #转换为列表
row = len(list)
col = len(list[0])
str="0"*(col+3)
for x in list: #加围墙 二维变一维
str+=x+"00"
str+="0"*(col+1)
mid = int(len(str)/2)
print(str,mid)
p = dp(mid)
print (p)
f.close()
以上这篇python分治法求二维数组局部峰值方法就是小编分享给大家的全部内容了,希望能给大家一个参考

D. python 算法有哪些比赛

算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。简单来讲,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。包括这几类:
1.
选择排序算法:选择排序是一种简单直观的排序算法。原理:首先在未排序序列中找到最小或最大元素,存放到排序序列的起始位置;然后,再从剩余未排序元素中继续寻找最大最小元素,然后放到已排序序列的后面,以此类推直到所有元素均排序完毕。
2.
快速排序算法:快速排序的运行速度快于选择排序。原理:设要排序的数组为N,首先任意选取一个数据作为关键数据,然后将所有比它小的数放到它前面,所有比它大的数都放到它后面,这个过程称之为快速排序。
3. 二分查找算法:二分查找的输入是一个有序的列表,如果要查找的元素包含在一个有序列表中,二分查找可以返回其位置。
4.
广度优先搜索算法:属于一种图算法,图由节点和边组成。一个节点可以与多个节点连接,这些节点称为邻居。它可以解决两类问题:第一类是从节点A出发,在没有前往节点B的路径;第二类问题是从节点A出发,前往B节点的哪条路径最短。使用广度优先搜索算法的前提是图的边没有权值,即该算法只用于非加权图中,如果图的边有权值的话就应该使用狄克斯特拉算法来查找最短路径。
5.
贪婪算法:又叫做贪心算法,对于没有快速算法的问题,就只能选择近似算法,贪婪算法寻找局部最优解,并企图以这种方式获得全局最优解,它易于实现、运行速度快,是一种不错的近似算法。

E. python 二分查找算法函数bi_search(),该函数实现检索任意一个整数在 prime() 函数生成的

defprime(n):
ifn<=2:
return[]
result=[False,False]+[True]*(n-2)
foriinrange(len(result)):
ifresult[i]==True:
forjinrange(2*i,len(result),i):
result[j]=False
return[iforiinrange(len(result))ifresult[i]==True]
defbi_search(prime,primelist,start,end):
ifstart>end:
return-1
mid=(start+end)//2
ifprimelist[mid]==prime:
returnmid
elifprimelist[mid]>prime:
end=mid-1
else:
start=mid+1
returnbi_search(prime,primelist,start,end)
if__name__=='__main__':
n=int(raw_input())
primelist=prime(n)
num=raw_input()
whilenum:
num=int(num)
index=bi_search(num,primelist,0,len(primelist)-1)
print(index)
num=raw_input()

F. 推荐系统召回算法之——图模型(Personal Rank)

目录

1、Personal Rank 算法背景

2、二分图的概念

3、文件解析原理及其物理意义

4、PR公式推导

5、python实现

6、总结

Personal Rank算法背景:

用户行为很容易表示为图

图推荐在个性化推荐领域效果显着,UI矩阵就是典型的二分图。

二分图: 又称为二部图,是图论中的一种特殊模型。设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,i in B),则称图G为一个二分图。

下面举例并从物理意义角度解析,二分图算法是如何将UI矩阵表示为二分图,计算出Item集合对固定user的重要程度排序?

1、两个顶点之间连通的路径数?

A到c:A->a->B->c;A->d->D->c两条连通路径;

A到e:A->b->C->e一条连通路径

故,A对物品c的偏好程度大于对物品e的偏好。

2、两个顶点之间的连通路径长度?

A->c两条路径4个顶点,连通路径长度都是3;A->e也为3

3、两个顶点之间连通路径经过顶点的初度?

A到c:A->a->B->c:3+2+2+2;A->d->D->c:3+2+2+2

A到e:A->b->C->e:3+2+2+1

算法文字描述 :对用户A进行个性化推荐,从用户A结点开始在用户物品二分图random walk ,以alpha的概率从A的出边中等概率选择一条游走过去,到达顶点后(例如a),有alpha的概率继续从顶点a的出边中等概率选择一条继续游走到下一个结点,或者(1-alpha)的概率回到起点A,多次迭代。直到所有的顶点对于用户A的重要度收敛。(二分图有且只有一个顶点)

算法公式推导 :

按照上面UI矩阵的二分图表示法结合算法文字描述,以节点A和a来举例解释公式。

:表示不同节点重要度。

以a为例,公式上部分表示节点a与之相连的节点A和B,分别从各自出边等概率贡献了1/3和1/2的重要度加和后乘以 , 取经值为0-1之间(经验值0.6)。

以A为例,公式下部分表示与A相连的节点a,b,d,分别从各自的出边等概率贡献了1/2的重要度,同时它们又是直接与A相连的节点,从PR算法文字描述可知,都可以以1- 的概率回到A节点。

公式(1)的矩阵表达方式为: (2)

其中 是n维向量,每一个元素代表一个节点的PR重要度; 也是n维向量,第i个位置为1,其余位置为0,我们就是要为第i个节点进行推荐。其中 是n阶转移矩阵:

 

由(2)进行恒等变形可得

(3)

(4) ,其中 就是所有节点的推荐结果,乘以 就是取出矩阵的第i列。

Python实现: https://github.com/SolodanceMagicq/RecommendSys/tree/master/PersonalRank

总结:

1、personalrank二分图算法,是一种无向图,有且只有一个root顶点。

2、算法核心思想是将UI矩阵以二分图存储,通过顶点按等概率随机游走,迭代计算关联节点pr值的过程。首次迭代只计算推荐用户(root顶点)与其直接关联的节点pr值,然后每次基于上次节点进一步迭代计算关联节点,直至收敛。

3、PersonalRank算法迭代的时间复杂度过高,须进一步优化,工业界一般会借助spark离线计算或maprece将多节点并行计算提高计算性能。

G. python中有哪些简单的算法

你好:
跟你详细说一下python的常用8大算法:
1、插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
2、希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
3、冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
4、快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5、直接选择排序
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
6、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
7、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
8、基数排序
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

H. python中list有没有自带二分查找函数

要判断一个list中是否存在你要的东西,可以用 value in list 的方式或者 list.index(value), 具体python内部实现用的什么算法。。。自己研究吧。

I. python算法有哪些

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

一个算法应该具有以下七个重要的特征:

①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;

②确切性(Definiteness):算法的每一步骤必须有确切的定义;

③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输 入是指算法本身定出了初始条件;

④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没 有输出的算法是毫无意义的;

⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行 的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);

⑥高效性(High efficiency):执行速度快,占用资源少;

⑦健壮性(Robustness):对数据响应正确。

相关推荐:《Python基础教程》

五种常见的Python算法:

1、选择排序

2、快速排序

3、二分查找

4、广度优先搜索

5、贪婪算法

J. python中有哪些简单的算法

Python中的基础算法有以下几种:
基础加减乘除算法:
加法>>> 2 + 2;
减法>>> 2 - 2;
乘法>>> 2 * 2;
除法>>> 2 / 2。
整除运算:
第一种>>> 2 / 3 整型与整型相除,获取整数,条件是除数被除数都是整数;
第二种>>> 2 // 3 双斜杠整除算法,只获取小数点前的部分整数值。
冥运算:
例子1:>>> 2 ** 3;
例子2; >>> -2 ** 3;
例子3: >>> (-2) ** 3

阅读全文

与python二分算法相关的资料

热点内容
如何找回iphone手机隐藏的app 浏览:19
linuxc多进程 浏览:649
android飞行游戏 浏览:965
数据挖掘常见算法 浏览:134
python单实例化 浏览:351
str中python 浏览:89
java的equals用法 浏览:845
奥维云服务器怎么开通 浏览:171
js取得服务器地址 浏览:812
起点中文网小说缓存在哪个文件夹 浏览:216
java疯狂讲义pdf 浏览:300
推有钱app在哪里 浏览:745
宁波鲍斯压缩机 浏览:93
新建文件夹电影2完整版演员表 浏览:988
空调压缩机为什么不能放到冷库用 浏览:89
江西云服务器节点虚拟主机 浏览:997
新氧app如何测试脸型 浏览:688
个税app如何查询社保 浏览:495
安卓设备快充什么时候开启的 浏览:13
ipad怎么用安卓手机传文件 浏览:584