导航:首页 > 源码编译 > 遗传算法优化bp神经网络权

遗传算法优化bp神经网络权

发布时间:2023-01-08 20:39:02

㈠ 遗传算法优化BP神经网络权阈值的适应度评价函数

评价阈值好坏的标准应该是:(网络实际输出T-理论输出P)的平方和。这里的实际输出指神经网络计算值,理论输出表示期望输出值。
这个平方和值应该尽量小。越小说明神经网络计算越准确。

㈡ 关于遗传算法优化BP神经网络的问题

程序:
1、未经遗传算法优化的BP神经网络建模
clear;
clc;
%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%
N=2000; %数据总个数
M=1500; %训练数据
%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output

load data.mat

%从1到N随机排序
k=rand(1,N);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%数据归一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%构建BP神经网络
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神经网络训练
net=train(net,inputn,outputn);
%测试样本归一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神经网络预测
an=sim(net,inputn_test);
%%网络得到数据反归一化
BPoutput=mapminmax('reverse',an,outputs);

figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('预测输出','期望输出','fontsize',12);
title('BP网络预测输出','fontsize',12);
xlabel('样本','fontsize',12);
xlabel('优化前输出的误差','fontsize',12);

figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('样本','fontsize',12);
ylabel('优化前输出的误差','fontsize',12);
%save net net inputs outputs
2、遗传算法优化的BP神经网络建模
(1)主程序
%清空环境变量
clc
clear

%读取数据
load data.mat

%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;

%训练数据和预测数据
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%构建网络
net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化
maxgen=10; %进化代数,即迭代次数
sizepop=30; %种群规模
pcross=[0.3]; %交叉概率选择,0和1之间
pmutation=[0.1]; %变异概率选择,0和1之间

%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围

%------------------------------------------------------种群初始化------------------------------%------------------

--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
%avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound); %编码
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
%avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
%trace=[avgfitness bestfitness];

%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

%avgfitness=sum(indivials.fitness)/sizepop;

% trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度

end
%% 遗传算法结果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
%xlabel('进化代数');ylabel('适应度');
%legend('平均适应度','最佳适应度');
disp('适应度 变量');
x=bestchrom;

%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x

(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;

%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;

%网络训练
[net,per2]=train(net,inputn,outputn);

%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;

%figure(4);
hold on;plot(1:500,error,'r');
legend('优化前的误差','优化后的误差','fontsize',12)

(2)编码子程序code.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end

(3)适应度函数fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x input 个体
%inputnum input 输入层节点数
%outputnum input 隐含层节点数
%net input 网络
%inputn input 训练输入数据
%outputn input 训练输出数据
%error output 个体适应度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));

(4)选择操作Select.m
function ret=select(indivials,sizepop)
% 该函数用于进行选择操作
% indivials input 种群信息
% sizepop input 种群规模
% ret output 选择后的新种群

%求适应度值倒数
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness为个体适应度值

%个体选择概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;

%采用轮盘赌法选择新个体
index=[];
for i=1:sizepop %sizepop为种群数
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新种群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom为种群中个体
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;

(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;

(6)变异操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss input : 变异概率
% lenchrom input : 染色体长度
% chrom input : 染色体群
% sizepop input : 种群规模
% opts input : 变异方法的选择
% pop input : 当前种群的进化代数和最大的进化代数信息
% bound input : 每个个体的上届和下届
% maxgen input :最大迭代次数
% num input : 当前迭代次数
% ret output : 变异后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
% 随机选择一个染色体进行变异
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 变异概率决定该轮循环是否进行变异
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 变异位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
pick=rand; %变异开始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %变异结束
flag=test(lenchrom,bound,chrom(i,:)); %检验染色体的可行性
end
end
ret=chrom;

㈢ 遗传算法优化BP神经网络权阈值

MATLAB自动给出的权阈值(应该是全0)----------应该随机初始化
究竟遗传算法能优化到什么程度 ------------ 不同的数据集,不同的训练方法,将有不同的结论

GA优化神经网络初始权值如果真的那么牛X就好了,从来就没有万能的方法。

㈣ 有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen

㈤ 我用遗传算法优化BP网路权值和阈值 ,可训练出来和标准BP差不多,并且误差很大,这是什么情况

使用这个函数,权值向量matlab工具箱在bp网络中初始会自动给出,你需要训练以后的权知是这个:net.iw{1,1}阈值是net.b{1}表示输入层与第一层之间的连接权知喝阈值,其他依此类推,有问题站内信!

㈥ 遗传算法为什么可以优化bp神经网络

㈦ matlab的遗传算法优化BP神经网络

对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。
步骤:
未经遗传算法优化的BP神经网络建模
1、
随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。
2、
数据预处理:归一化处理。
3、
构建BP神经网络的隐层数,次数,步长,目标。
4、
使用训练数据input_train训练BP神经网络net。

㈧ 基于遗传算法的BP神经网络

源码地址: https://github.com/Grootzz/GA-BP
介绍:
利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点

背景:
这个项目的背景为客运量和货运量的预测

文件介绍:

因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。
操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹
这样,工程中就可以调用GAOT工具包中的函数了

源码地址: https://github.com/Grootzz/GA-BP

㈨ 遗传算法为什么可以优化bp神经网络

1、遗传算法优化BP神经网络是指优化神经网络的参数; 2、因此,对训练时间没有影响。

阅读全文

与遗传算法优化bp神经网络权相关的资料

热点内容
华为如何将app移到桌面 浏览:597
阿里安卓面试算法题 浏览:705
语文知识手册pdf 浏览:841
为什么安卓手机oled屏很白很亮 浏览:252
如何找回iphone手机隐藏的app 浏览:21
linuxc多进程 浏览:649
android飞行游戏 浏览:965
数据挖掘常见算法 浏览:134
python单实例化 浏览:351
str中python 浏览:89
java的equals用法 浏览:845
奥维云服务器怎么开通 浏览:171
js取得服务器地址 浏览:812
起点中文网小说缓存在哪个文件夹 浏览:216
java疯狂讲义pdf 浏览:300
推有钱app在哪里 浏览:745
宁波鲍斯压缩机 浏览:93
新建文件夹电影2完整版演员表 浏览:988
空调压缩机为什么不能放到冷库用 浏览:89
江西云服务器节点虚拟主机 浏览:997