㈠ LTE-PHICH漏检概率怎么测量接收端如何检测PHICH有无
我觉得按照协议,只要上行发了数据,那么UE就必然会在对应时刻检测PHICH,按理来说不管解出什么出来,总归要判决为ACK和NACK其中的一种。因此不应该是漏检,而是错检。当然我们并不清楚终端的检测算法,也可能某些终端有检测机制可以判断eNB是否没发PHICH(但理论上这是违反协议的),但各个终端的方式肯定是不同的。这就要看不同终端的接收机原理的。
㈡ LTE的关键技术是什么
SC-FDMA技术;
SC-FDMA技术是一种单载波多用户接入技术,它的实现比OFDM/OFDMA简单,但性能逊于OFDM/OFDMA。相对于OFDM/OFDMA,SC-FDMA具有较低的PAPR。发射机效率较高,能提高小区边缘的网络性能。
最大的好处是降低了发射终端的峰均功率比、减小了终端的体积和成本,这是选择SC-FDMA作为LTE上行信号接入方式的一个主要原因。其特点还包括频谱带宽分配灵活、子载波序列固定、采用循环前缀对抗多径衰落和可变的传输时间间隔等。
OFDM技术
OFDM技术LTE系统的主要特点,它的基本思想是把高速数据流分散到多个正交的子载波上传输,从而使子载波上的符号速率大大降低,符号持续时间大大加长,因而对时延扩展有较强的抵抗力;
减小了符号间干扰的影响。通常在OFDM符号前加入保护间隔,只要保护问隔大于信道的时延扩展则可以完全消除符号间干扰ISI。
㈢ LTE采用了哪些关键技术
各个子载波的正交性是由基带IFFT(Inverse Fast Fourier Transform)实现的。由于子载波带宽较小(15kHz),多径时延将导致符号间干扰ISI,破坏子载波之间的正交性。为此,在OFDM符号间插入保护间隔,通常采用循环前缀CP来实现; 下行多址接入技术OFDMA,上行多址接入技术SC-FDMA(Single Carrier-FDMA); 采用MIMO(Multiple-Input Multiple Output)技术 LTE下行支持MIMO技术进行空间维度的复用。空间复用支持单用户SU-MIMO(Single-User-MIMO)模式或者多用户MU-MIMO (Multiple-User-MIMO)模式。SU-MIMO和MU-MIMO都支持通过Pre-coding的方法来降低或者控制空间复用数据流之间的干扰,从而改善MIMO技术的性能。SU-MIMO中,空间复用的数据流调度给一个单独的用户,提升该用户的传输速率和频谱效率。MU-MIMO中,空间复用的数据流调度给多个用户,多个用户通过空分方式共享同一时频资源,系统可以通过空间维度的多用户调度获得额外的多用户分集增益。 受限于终端的成本和功耗,实现单个终端上行多路射频发射和功放的难度较大。因此,LTE正研究在上行采用多个单天线用户联合进行MIMO传输的方法,称为Virtual-MIMO。调度器将相同的时频资源调度给若干个不同的用户,每个用户都采用单天线方式发送数据,系统采用一定的MIMO解调方法进行数据分离。采用Virtual-MIMO方式能同时获得MIMO增益以及功率增益(相同的时频资源允许更高的功率发送),而且调度器可以控制多用户数据之间的干扰。同时,通过用户选择可以获得多用户分集增益。 调度和链路自适应 LTE支持时间和频率两个维度的链路自适应,根据时频域信道质量信息对不同的时频资源选择不同的调制编码方式。 功率控制在CDMA系统中是一项重要的链路自适应技术,可以避免远近效应带来的多址干扰。在LTE系统中,上下行均采用正交的OFDM技术对多用户进行复用。因此,功控主要用来降低对邻小区上行的干扰,补偿链路损耗,也是一种慢速的链路自适应机制。 小区干扰控制 LTE系统中,系统中各小区采用相同的频率进行发送和接收。与CDMA系统不同的是,LTE系统并不能通过合并不同小区的信号来降低邻小区信号的影响。因此必将在小区间产生干扰,小区边缘干扰尤为严重。 为了改善小区边缘的性能,系统上下行都需要采用一定的方法进行小区干扰控制。目前正在研究方法有: 干扰随机化:被动的干扰控制方法。目的是使系统在时频域受到的干扰尽可能平均,可通过加扰,交织,跳频等方法实现; 干扰对消:终端解调邻小区信息,对消邻小区信息后再解调本小区信息;或利用交织多址IDMA进行多小区信息联合解调; 干扰抑制:通过终端多个天线对空间有色干扰特性进行估计和抑制,可以分为空间维度和频率维度进行抑制。系统复杂度较大,可通过上下行的干扰抑制合并IRC实现; 干扰协调:主动的干扰控制技术。这是一种比较常见的小区干扰抑制方法;
㈣ 在lte系统中,ofdm的不足有哪些
尽管TD-LTE的关键技术用OFDM技术,但其中也存在不足,归纳为三点:PARP较高、受频率偏差的影响、受时间偏差的影响。下面简单地介绍一下OFDM系统降低PAPR 的技术。
OFDM包络的不稳定性可以用PAPR 来表示。PAPR 越大, 系统包络的不稳定性越大。因此要改善系统的性能, 就要设法减少PAPR, 而PAPR 与传输序列的自相关函数有关。围绕如何降低OFDM系统的PAPR问题, 国内外学者已做了大量的研究工作, 其主要算法可以归纳为以下三类。
一、信号预畸变技术
信号预畸变技术的中心思想是在信号送到放大器之前, 首先经过非线性处理对有较大峰值功率的信号进行预畸变, 使其不会超出放大器的动态变化范围, 从而避免较大PAPR 的出现。该技术包括以下7 种方法:
1、限幅法
限幅法中矩形窗的引入会对原信号的频谱产生影响,从而引起新的带外噪声, 降低频谱效率。并且由于该法是一种非线性变化, 会产生严重的带内失真, 从而降低误码率性能, 导致系统性能下降。为了克服由于限幅导致的误码性能的恶化, 可以采用有效的信道编解码技术。
2、加窗法
这种方法采用了频谱特性好于矩形窗的窗函数, 但需要在上采样后的较高速率下对信号进行处理, 因此实现较难, 且会影响信号频谱特性。
3、加校正函数法
加校正函数法指用校正函数来处理OFDM信号, 以消除OFDM的幅度峰值, 而由校正函数引起的频带外干扰为零或忽略不计。其中校正函数又分为乘性校正函数和加性校正函数两种。
4、加权多载波调制法
加权多载波调制法是指在FFT前用Gaussian或者Hamming 窗函数加权输入信号来降低PAPR。
5、载波抑制峰值法
载波抑制峰值法的主要思想是当OFDM信号的峰值功率出现时, 将OFDM一些子载波不用来传送数据, 而是传送一些能抑制和抵消峰值的、设计好的信号。通常建议使用不同的频段作为这个载波的频率。这个技术的优点是既不会降低系统的SNR( 信噪比) , 也不会引入带外干扰, 缺点是降低了系统的数据速率, 增加了系统的复杂性。
6、压缩扩展法
传统扩展法的主要思想是提升信号中的低幅度值而保持其峰值幅度, 以此来提升信号的平均功率, 从而达到降低PAPR 的目的。然而由此增加了系统的平均发射功率, 使符号的功率值更加接近功率放大器的非线性变换区域, 容易造成信号失真。因此提出了一种改进的压缩扩展变换方法, 这种方法中, 对大功率发射信号进行了压缩, 而把小功率信号进行了放大, 从而可以使发射信号的平均功率相对保持不变。这样不但可以减小系统的PAPR, 而且还可以使小功率信号抗干扰的能力有所增强。次方法虽然计算复杂度低, 但是放大器输入信号的平均功率却增加了, 从而对非线性失真更敏感。因此又有人提出了压扩转换法,提出的压缩扩展法均分别借鉴了语音信号信源编码中非均匀量化方法的μ律和A 律的压缩扩展表达式, 这些方法在发送端对信号进行压缩或扩大, 使PAPR 降低, 而在接收端能做到几乎不损伤信号的恢复, 实现的计算复杂度也较低。
7、预畸变和畸变补偿法
预畸变是指在发送端对未进入放大器的信号进行与放大器畸变特性相反的预畸变, 以减少信号在通过放大器后的畸变。畸变补偿技术是指在OFDM系统的接收端加一个补偿器用于补偿和修正被畸变的信号。这两种技术在实际应用中都会大大增加系统的复杂性。
㈤ 高速铁路场景中LTE系统干扰消除技术的研究分析
高速铁路场景中LTE系统干扰消除技术的研究分析
【摘 要】 高速铁路场景中列车高速移动,多普勒频移严重,导致LTE系统的无线链路性能很差,因此需要找到物理层降低干扰的方案。通过对小区间干扰消除以及小区间干扰协调技术方案进行研究,提出了干扰抑制合并(IRC)技术和准空白子帧(ABS)技术两种方案,并通过仿真验证了这两种方案对LTE系统无线链路性能的增强。
【关键词】 高速场景 干扰抑制合并 小区间干扰协调
[Abstract] As Doppler frequency offset in high-speed railway scene results in poor wireless link performance for LTE system, this paper studies the technology scheme of the inter-cell interference elimination and coordination, and proposes a solution for interference rejection in the physical layer, with two technologies combination of Interference Rejection Combining (IRC) and Almost Blank Subframe (ABS). The simulation proves that the schemes mentioned before improves the radio link performance for LTE.
[Key words] high-speed railway scene interference rejection combining inter-cell interference coordination
1 引言
高铁通信传输环境一般有弯道弧度较小、环境开阔、列车移动速度快和基站为条形分布等特点,这些环境因素导致了传播特性的不同,具体如下:
(1)基站距离铁路近,基站与列车运行所形成夹角小,列车速度快,导致多普勒频移大;
(2)由于车速快,信道传播环境变化也较快,不同的传播环境导致信道估计的难度加大;
(3)由于列车所属小区的频繁变换,小区间干扰就显得更为明显。
其中,多普勒频移校正是突出的一大难题。由于列车的高速移动,多普勒频移严重等因素导致无线链路很不稳定,性能变差,所以要找到物理层降低干扰的方案。
LTE系统下行引入了OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)接入方式,使小区内的用户信息承载在相互正交的不同载波上,因此小区间干扰成为LTE系统的主要干扰来源,小区间干扰抑制技术就显得格外重要。小区间干扰抑制方案主要分为三种,即小区间干扰随机化、小区间干扰消除、小区间干扰协调。本文将主要对小区间干扰消除以及小区间干扰协调技术方案进行深入研究。
2 技术介绍
2.1 干扰抑制合并技术
IRC(Interference Rejection Combining,干扰抑制合并)技术是小区间干扰消除的主要方法。该算法是通过估计出干扰(认为是有色噪声)和噪声的相关矩阵,从而对干扰起到一种抑制作用的分集合并技术。
天线间干扰是相关的,IRC算法是直接估计出干扰(有色噪声)和噪声的相关矩阵来计算。IRC在计算权向量矩阵时考虑了干扰(非对角元素)的影响,合并后提高了SINR(Signal to Interference plus Noise Ratio,信噪比),因此IRC对非白噪声的干扰有抑制或者对消的作用,从而适用于干扰受限场景。
IRC算法的关键就是计算干扰加噪声的协方差矩阵,故对于其估计的准确性会对IRC算法的性能产生很大的影响。如果接收端已知干扰信号的信道状态信息,那么根据IRC原理,可以较好地减小误码率。但由于实际接收端无法已知干扰信号的信道信息,只能采用接收信号的自相关矩阵近似估计干扰与噪声的协方差矩阵,并进行时域与频域上的平均或者直接采用干扰与噪声计算协方差矩阵。
2.2 小区间干扰协调技术
ICIC(Inter-Cell Interference Coordination,小区间干扰协调)技术的基本思想是通过管理无线资源使小区间干扰得到控制,是一种考虑多个小区中资源使用和负载等情况而进行的多小区无线资源管理方法。具体而言,ICIC以小区间协调的方式对各个小区中无线资源的使用进行限制,限制时频资源的使用或在一定时频资源上限制其发射功率等。
3 系统模型与理论方案
3.1 最大SINR准则
以一个发送端有1根天线、接收端有N根天线的SIMO系统为例,推导权向量的表达式,信号接收模型为:
(1)
其中, y是N×1维的接收信号向量; H是N×1维的信道矩阵; u是1×1维的发送信号向量;x是N×1维的噪声与干扰的和向量。
设w为N×1维的权向量矩阵,则目标函数为:
(2)
其中,Ruu是噪声与干扰和向量的相关矩阵。
由广义瑞利商定理可知,当w为矩阵最大特征值对应的特征向量时,SINR最大,即:
(3)
由于H是列向量,故只有一个非零的特征值 ,此特征值对应的.特征向量为,因此:
(4)
3.2 系统模型
本文讨论具有两根发射天线和两根接收天线的SFBC编码方式的系统模型。其中,噪声为高斯白噪声,并加入一个干扰源,因此系统模型可以表示为:
(5)
其中,R是接收信号向量;H是用户信道矩阵;X是用户信号向量;G是干扰信道矩阵;Z是干扰信号向量;N是高斯噪声向量。
IRC算法充分考虑了小区干扰,将干扰与噪声的协方差矩阵估计出来,实现对干扰的抑制。
根据SFBC编码方式,可以得到:
(6)
其中,、、、分别表示Rx1与Rx2上接收到的第k个及第(k+1)个载波上的符号;H11、H12、H21、H22分别表示Tx1到Rx1、Tx1到Rx2、Tx2到Rx1、Tx2到Rx2的信道状态。
由此可得,干扰与噪声的协方差矩阵为:
(7)
根据最大SINR准则,,可得:
(8)
(9)
由此得到了发送信号的估计信号。
3.3 小区间干扰协调方案
小区间干扰协调技术的理论方案是在时频资源的协调方面,采用准空白子帧(ABS)技术,在宏基站中配置ABS子帧,协调时频资源,从而降低宏小区之间的干扰。
ABS子帧配置方案有两种:一种是ABS冲突导频配置;另一种是ABS非冲突导频配置。如图1所示:
图1 ABS冲突/非冲突导频配置方案
因此可以通过仿真,对比将干扰小区的子帧配置成常规子帧或ABS子帧时的误包率曲线,从而得到ABS技术在干扰抑制方面的效果。
4 仿真方法与结果
4.1 仿真平台介绍
本次仿真所使用的是LTE系统PDCCH(Physical Downlink Control Channel,物理下行控制信道)链路级平台,该平台的单链路结构如图2所示:
在此基础上,加入一个干扰小区信号,如图3所示:
本次仿真所使用的参数如表1所示:
表1 仿真使用的参数
编码方式 咬尾卷积码 码速率 1/3
信道模型 Jakes模型 天线数 2发2收
分集方式 SFBC编码 用户所占资源 2CCE
信道带宽 20M 信道估计方法 MMSE信道估计
4.2 仿真结果
本文分别对干扰信号功率为1/4/7dB三种场景进行了仿真,仿真结果显示了干扰抑制合并(IRC)技术和小区间干扰协调(ICIC)技术在消除小区间干扰的作用。
通过仿真结果分析,可以得到干扰抑制合并(IRC)技术和小区间干扰协调(ICIC)技术对误包率增益曲线的改善情况。
由图4可知:
(1)干扰信号功率为1dB场景下,误包率曲线的增益约为5dB;
(2)干扰信号功率为4dB场景下,误包率曲线的增益约为6dB;
(3)干扰信号功率为7dB场景下,误包率曲线的增益约为8dB。
这说明,随着干扰信号功率的增加,干扰抑制合并技术对提高误包率曲线增益的效果得到了增强。
由图5可知:
(1)干扰信号功率为1dB场景下,加入ABS子帧后,导频冲突情况下的误包率曲线的增益约为3dB,非导频冲突情况下的误包率曲线的增益约为8dB;
(2)干扰信号功率为4dB场景下,加入ABS子帧后,导频冲突情况下的误包率曲线的增益约为3dB,非导频冲突情况下的误包率曲线的增益约为10dB;
(3)干扰信号功率为7dB场景下,加入ABS子帧后,导频冲突情况下的误包率曲线的增益约为3dB,非导频冲突情况下的误包率曲线的增益约为12dB。
这是由于导频冲突情况下,干扰信号严重影响了信道估计的准确性;而非导频冲突情况下,干扰信号只是对传输的数据有较小的影响。因此,非导频冲突情况的误包率性能要好于导频冲突情况。
5 结论
综上所述,干扰抑制合并技术与小区间干扰协调技术在改善高速铁路无线链路性能上有较为明显的效果,笔者建议可以采用这两种方案在物理层上消除干扰,从而增加高铁通信的稳定性。
参考文献:
[1] 沈嘉,索士强,全海洋,等. 3GPP长期演进(LTE)技术原理与系统设计[M]. 北京: 人民邮电出版社, 2008.
[2] 陈其铭,罗伟民,孙慧霞. TD-LTE网络中ICIC技术性能初探[J]. 移动通信, 2010(5): 32-35.
[3] 吴志忠. 移动通信无线电波传播[M]. 北京: 人民邮电出版社, 2002.
[4] 彭林. 第三代移动通信技术[M]. 北京: 电子工业出版社, 2003.
[5] 啜钢,王文博,常永宇,等. 移动通信原理与系统[M]. 2版. 北京: 北京邮电大学出版社, 2009.
;㈥ 如何获得在android的LTE信号的强度
Android手机信号强度检测详细介绍
作者:skxy 字体:[增加 减小] 类型:转载 时间:2016-11-17 我要评论
这篇文章主要介绍了Android手机信号强度检测的相关资料,android定义了2种信号单位:dBm和asu。具体两种的关系本文给大家介绍非常详细,需要的朋友可以参考下
最近到处在跑着找工作,难免在面试过程中遇到这样那样的问题,记得最清楚一次在面试过程中被问到,当手机处于弱网状态下,如何处理,如何监听网络信号强度变化。但是真是蒙了,回答的乱七八糟,思路一点都不明确。今天小编在这里带领大家了解下关于手机信号强度的相关几个概念。
Android手机信号强度介绍
android定义了2种信号单位:dBm和asu。它们之间的关系是:dBm =-113+2asu,这是google给android手机定义的特有信号单位。例如,我的信号强度为-53dBm,则对应30asu,因为-53 = -113 + (230) 。
详细介绍两者:
asu:alone signal unit 独立信号单元,是一种模拟信号。ASU仅仅代表手机将它的位置传递给附近的信号塔的速率。它和dBm测量的是一样的东西,但是是以一种更加线性的方式来表示。
dBm:是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。
[例] 如果功率P为1mw,折算为dBm后为0dBm。
[例] 对于0.01mW的功率,按dBm单位进行折算后的值应为: 10log(0.01/1)=-20dBm。
这个数值越大,表明信号越好。由于手机信号强度一般较小,折算成为dBm一般都是负数。
中国移动的规范规定,手机接收电平>=(城市取-90dBm;乡村取-94dBm) 时,则满足覆盖要求,
也就是说此处无线信号强度满足覆盖要求.-67dBm要比-90dBm信号要强20多个dB,
那么它在打电话接通成功率和通话过程中的话音质量都会好的多。再引入一个相关概念dB。
dB:是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log(甲功率/乙功率),如果采用两者的电压 比计算,要用20log(甲电压/乙电压)。
[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB,即甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。
总结:dBm是负数,越接近0信号强度越高,信号越好,但不可能为0。asu为正数,值越大信号越好。dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。
关于对数运算,不记得的自行复习一下了。
下面再来了解一下网络类型吧,还是很多的,不过在国内只要了解国内三大运营商的网络类型大概就可以了。
电信
2G CDMA
3G CDMA2000
4G TD-LTE,FDD-LTE
移动
2G GSM
3G TD-SCDMA
4G TD-LTE,FDD-LTE
联通
2G GSM
3G WCDMA
4G TD-LTE,FDD-LTE
而谷歌API给我们提供的有19种类型,在TelephonyManager类中定义,具体如下
/** Network type is unknown */
public static final int NETWORK_TYPE_UNKNOWN = 0;
/** Current network is GPRS */
public static final int NETWORK_TYPE_GPRS = 1;
/** Current network is EDGE */
public static final int NETWORK_TYPE_EDGE = 2;
/** Current network is UMTS */
public static final int NETWORK_TYPE_UMTS = 3;
/** Current network is CDMA: Either IS95A or IS95B*/
public static final int NETWORK_TYPE_CDMA = 4;
/** Current network is EVDO revision 0*/
public static final int NETWORK_TYPE_EVDO_0 = 5;
/** Current network is EVDO revision A*/
public static final int NETWORK_TYPE_EVDO_A = 6;
/** Current network is 1xRTT*/
public static final int NETWORK_TYPE_1xRTT = 7;
/** Current network is HSDPA */
public static final int NETWORK_TYPE_HSDPA = 8;
/** Current network is HSUPA */
public static final int NETWORK_TYPE_HSUPA = 9;
/** Current network is HSPA */
public static final int NETWORK_TYPE_HSPA = 10;
/** Current network is iDen */
public static final int NETWORK_TYPE_IDEN = 11;
/** Current network is EVDO revision B*/
public static final int NETWORK_TYPE_EVDO_B = 12;
/** Current network is LTE */
public static final int NETWORK_TYPE_LTE = 13;
/** Current network is eHRPD */
public static final int NETWORK_TYPE_EHRPD = 14;
/** Current network is HSPA+ */
public static final int NETWORK_TYPE_HSPAP = 15;
/** Current network is GSM {@hide} */
public static final int NETWORK_TYPE_GSM = 16;
/** Current network is TD_SCDMA {@hide} */
public static final int NETWORK_TYPE_TD_SCDMA = 17;
/** Current network is IWLAN {@hide} */
public static final int NETWORK_TYPE_IWLAN = 18;
下面通过一些实例来测试一下吧
首先记得加权限
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
实例代码
public class MainActivity extends AppCompatActivity {
private static final int NETWORKTYPE_WIFI = 0;
private static final int NETWORKTYPE_4G = 1;
private static final int NETWORKTYPE_2G = 2;
private static final int NETWORKTYPE_NONE = 3;
public TextView mTextView;
public TelephonyManager mTelephonyManager;
public PhoneStatListener mListener;
/**
* 网络信号强度监听
*
* @param savedInstanceState
*/
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView) findViewById(R.id.textview);
//获取telephonyManager
mTelephonyManager = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);
//开始监听
mListener = new PhoneStatListener();
//监听信号强度
mTelephonyManager.listen(mListener, PhoneStatListener.LISTEN_SIGNAL_STRENGTHS);
}
@Override
protected void onResume() {
super.onResume();
mTelephonyManager.listen(mListener, PhoneStatListener.LISTEN_SIGNAL_STRENGTHS);
}
@Override
protected void onPause() {
super.onPause();
//用户不在当前页面时,停止监听
mTelephonyManager.listen(mListener, PhoneStatListener.LISTEN_NONE);
}
private class PhoneStatListener extends PhoneStateListener {
//获取信号强度
@Override
public void onSignalStrengthsChanged(SignalStrength signalStrength) {
super.onSignalStrengthsChanged(signalStrength);
//获取网络信号强度
//获取0-4的5种信号级别,越大信号越好,但是api23开始才能用
// int level = signalStrength.getLevel();
int gsmSignalStrength = signalStrength.getGsmSignalStrength();
//获取网络类型
int netWorkType = getNetWorkType(MainActivity.this);
switch (netWorkType) {
case NETWORKTYPE_WIFI:
mTextView.setText("当前网络为wifi,信号强度为:" + gsmSignalStrength);
break;
case NETWORKTYPE_2G:
mTextView.setText("当前网络为2G移动网络,信号强度为:" + gsmSignalStrength);
break;
case NETWORKTYPE_4G:
mTextView.setText("当前网络为4G移动网络,信号强度为:" + gsmSignalStrength);
break;
case NETWORKTYPE_NONE:
mTextView.setText("当前没有网络,信号强度为:" + gsmSignalStrength);
break;
case -1:
mTextView.setText("当前网络错误,信号强度为:" + gsmSignalStrength);
break;
}
}
}
public static int getNetWorkType(Context context) {
int mNetWorkType = -1;
ConnectivityManager manager = (ConnectivityManager) context.getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = manager.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnected()) {
String type = networkInfo.getTypeName();
if (type.equalsIgnoreCase("WIFI")) {
mNetWorkType = NETWORKTYPE_WIFI;
} else if (type.equalsIgnoreCase("MOBILE")) {
return isFastMobileNetwork(context) ? NETWORKTYPE_4G : NETWORKTYPE_2G;
}
} else {
mNetWorkType = NETWORKTYPE_NONE;//没有网络
}
return mNetWorkType;
}
/**判断网络类型*/
private static boolean isFastMobileNetwork(Context context) {
TelephonyManager telephonyManager = (TelephonyManager)context.getSystemService(Context.TELEPHONY_SERVICE);
if (telephonyManager.getNetworkType() == TelephonyManager.NETWORK_TYPE_LTE) {
//这里只简单区分两种类型网络,认为4G网络为快速,但最终还需要参考信号值
return true;
}
return false;
}
}
关于信号获取流程,这个还需深入研究,目前只在应用层简单获取了网络信号。
㈦ td-lte系统会产生ici和isi干扰,lte采用了哪些小区间干扰消除的技术
LTE特有的OFDMA接入方式,使本小区内的用户信息承载在相互正交的不同载波上,因此所有的干扰来自于其他小区。对于小区中心的用户来说.其本身离基站的距离就比较近,而外小区的干扰信号距离又较远,则其信干噪比相对较大:但是对于小区边缘的用户,由于相邻小区占用同样载波资源的用户对其干扰比较大,加之本身距离基站较远,其信干噪比相对就较小,导致虽然小区整体的吞吐量较高,但是小区边缘的用户服务质量较差.吞吐量较低。因此,在LTE中,小区间干扰抑制技术非常重要。
2.1干扰随机化
对于0FDMA的接人方式,来自外小区的干扰数目有限,但干扰强度较大,干扰源的变化也比较快,不易估计,于是采用数学统计的方法来对干扰进行估计就成为一种比较简单可行的方法。干扰随机化不能降低干扰的能量,但能通过给干扰信号加扰的方式将干扰随机化为“白噪声”,从而抑制小区间干扰,因此又称为“干扰白化”。干扰随机化的方法主要包括小区专属加扰和小区专属交织。
a)小区专属加扰,即在信道编码后,对干扰信号随机加扰。如图l所示,对小区A和小区B,在信道编码和交织后,分别对其传输信号进行加扰。如果没有加扰,用户设备(UE)的解码器不能区分接收到的信号是来自本小区还是来自其他小区,它既可能对本小区的信号进行解码,也可能对其他小区的信号进行解码,使得性能降低。小区专属加扰可以通过不同的扰码对不同小区的信息进行区分,让UE只针对有用信息进行解码,以降低干扰。加扰并不影响带宽,但是可以提高性能。
图1小区专属加扰
b)小区专属交织,即在信道编码后,对传输信号进行不同方式的交织。如图2所示,对于小区A 和小区B,在信道编码后分别对其干扰信号进行交织。小区专属交织的模式可以由伪随机数的方法产生,可用的交织模式数(交织种子)是由交织长度决定的,不同的交织长度对应不同的交织模式编号, UE端通过检查交织模式的编号决定使用何种交织模式。在空间距离较远的小区间,交织种子可以复用,类似于蜂窝系统中的频分复用。对于干扰的随机化而言,小区专属交织和小区专属加扰可以达到相同的系统性能。
图2小区专属交织
2.2干扰删除
干扰删除的想法最初是在CDMA系统中提出,可以将干扰小区的信号解调、解码,然后将来自该小区的干扰重构、删除。LTE虽然采用0FDMA的接人方式,仍然引入了干扰删除的概念。小区间干扰删除的实现方法主要有以下2种。
a)利用在接收端的多天线空间抑制方法来进行干扰删除,相关的检测算法在多输入多输出(M1— MO)的研究中已经被广泛采用。
b)基于检N/删除的方法。典型的如采用交织多址(IDMA)删除小区间的干扰,IDMA可以通过伪随机交织器产生不同的交织图案,并分配给不同的小区,接收机采用不同的交织图案解交织,即可将目标信号和干扰信号分别解出,然后在总的接收信号中减去干扰信号,进而有效地提高接收信号的信干技术介绍及比较噪比。
另外,在LTE的下行传输中.可以通过不同方式来获得干扰信号的信息。删除Node B间干扰时,可以通过检测UE端的干扰控制信号来获得干扰信号的信息;删除扇区间干扰时,Node B直接使用自己的控制信道向UE发送干扰信号的信息。显然,接收机获取的干扰信号信息越多,干扰删除的性能越好。
小区间干扰删除的优势在于,对小区边缘的频率资源没有限制,相邻小区即使在小区边缘也可以使用相同的频率资源,可以获得更高的小区边缘频谱效率和总频谱效率。局限在于小区间必须保持同步,目标小区必须知道干扰小区的导频结构,以对干扰信号进行信道估计。对于要进行小区间干扰删除的用户,必须给其分配相同的频率资源。
2.3干扰协调/避免
对于0FDMA的接入方式。小区中心的用户由于既不会受到本小区用户的干扰.来自外小区的干扰源距离又比较远,所以可以达到比较好的接收效果。而对于小区边缘的用户受到的外小区干扰则比较严重。
干扰协调,避免的核心思想是通过小区间的协调对一个小区的可用资源进行某种限制,以减少本小区对相邻小区的干扰,提高相邻小区在这些资源上的信噪比以及小区边缘的数据速率和覆盖。业界提出了很多干扰协调/避免的方法,本文将介绍一种被普遍认可的软频率复用方案。
在此方案中,每个小区中的子载波被分为两组.一组称为主子载波,另一组称为辅子载波。主子载波可以在全部小区范围内使用,而辅子载波只可以使用在小区的中心区域(见图3)。这样对于子载波的分配方式可以使得相邻小区边界使用的子载波均相
图3软频率复用示意图
互正交,使用相同频率子载波的用户距离足够远.从而有效地避免或减小相邻小区在边缘的用户的同频干扰。对于小区中
㈧ lte同步过程中,无线帧同步是通过什么信号来实现的
PSS主同步信号和SSS辅同步信号,PSS表示一个物理小区组内的ID(0、1、2),SSS表示物理小区组号(0~167); 时间同步[2] 小区同步检测是小区搜索中的第一步,基本原理是使用本地序列和接收信号进行同步相关,进而获得期望的峰值,根据峰值判断出同步信号位置。TD-LTE系统中的时域同步检测分为两个步骤:第一个步骤是检测主同步信号,在检测出主同步信号后,根据主同步信号与辅同步信号之间的固定关系,进行第二个步骤检测,即检测辅同步信号。 当终端处于初始接入状态时,对接入小区带宽是未知的。UE在其支持的工作频段内以100kHz为间隔的频栅上进行扫描,并在每个频点上进行主同步信道检测。这一过程中,终端仅仅检测1.08MHz的频带上是否存在主同步信号。 当检测出PSS以后,可获得(2) IDN,确定5ms定时。在PSS基础上向前搜索 SSS,SSS由两个伪随机序列组成,前后半帧映射相反,检测到两个SSS就 获得了10ms定时,达到了帧同步目的。由PSS确定的(2)IDN和由SSS确定的(1) ID N可以得到小区ID,同时完成CP类型检测。 具体可参见网址:http://wenku..com/link?url=L_RqORzbp_EsfMhGw2zu1flcjKM6wTyshKJum
㈨ lte ue通过哪个信道/信号来评估下行信号质量
(1)下行AMC过程:通过反馈的方式获得信道状态信息,终端检测下行公共参考信号,进行下行信道质量测量并将测量的信息通过进行相应的下行传输MCS格式的调整。
(2)上行AMC过程:与下行AMC过程不同,上行过程不再采用反馈方式获得信道质量信息。基站侧通过对终端发送的上行参考信号的测量,进行上行信道质量测量;基站根据所测得信息进行上行传输格式的调整并通过控制信令通知UE
上下行信道质量检测过程不同,实际上是减少UE的运算,减少UE的能耗(省电)。