导航:首页 > 源码编译 > dfs算法动图

dfs算法动图

发布时间:2023-01-10 21:06:36

① dfs算法是什么

dfs算法是深度优先搜索。

深度优先搜索属于图算法的一种,英文缩写为DFS。其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

深度优先搜索是一种在开发爬虫早期使用较多的方法,它的目的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML文件)。

主要思想

借用一个邻接表和布尔类型数组(判断一个点是否查看过,用于避免重复到达同一个点,造成死循环等),先将所有点按一定次序存入邻接表,再通过迭代器,对邻接表的linklist和布尔数组做出操作,从而达到不重复递归遍历的效果。

② dfs算法是什么

DFS即Depth First Search,是一种用于遍历或搜索树或图的算法。

沿着树的深度遍历树的节点,尽可能深的搜索树的分支。其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

dfs算法剪枝分类

1、顺序性剪枝

若一些题的搜索顺序对答案无影响,那么搜索顺序的不同会导致搜索树形态的改变,优先搜索分支较少的阶段,此时能减少搜索的规模。

2、重复性剪枝

在搜索的时候如果有多种方式可以到达一个状态,那么我们只需要搜索一个分支就可以了。

3、可行性剪枝

可行性剪枝是对搜索正确性的一个保证,当分支在递归边界的时候回溯。

4、最优性剪枝

在搜索过程中,如果当前阶段的代价已经超过我们已知的最小代价,那么此时继续搜索下去就失去了意义。

5、记忆化剪枝

记录搜索状态的结果,当重复遍历一个状态的时候就可以直接返回这个状态的答案,避免重复的搜索。

③ DFS的搜索的过程

当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
深度优先搜索是一种在开发爬虫早期使用较多的方法。在一个HTML文件中,当一个超链被选择后,被链接的HTML文件将执行深度优先搜索,即在搜索其余的超链结果之前必须先完整地搜索单独的一条链。深度优先搜索沿着HTML文件上的超链走到不能再深入为止,然后返回到某一个HTML文件,再继续选择该HTML文件中的其他超链。当不再有其他超链可选择时,说明搜索已经结束。优点是能遍历一个Web 站点或深层嵌套的文档集合;缺点是因为Web结构相当深,,有可能造成一旦进去,再也出不来的情况发生。
事实上,深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
因发明“深度优先搜索算法”,霍普克洛夫特与陶尔扬共同获得计算机领域的最高奖:图灵奖.
正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续汉下去。当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。
和宽度优先搜索类似,每当扫描已发现结点u的邻接表从而发现新结点v时,深度优先搜索将置v的先辈域π[v]为u。和宽度优先搜索不同的是,前者的先辈子图形成一棵树,而后者产生的先辈子图可以由几棵树组成,因为搜索可能由多个源顶点开始重复进行。因此深度优先搜索的先辈子图的定义也和宽度优先搜索稍有不同: Gπ=(V,Eπ),Eπ={(π[v],v)∈E:v∈V∧π[v]≠NIL}
深度优先搜索的先辈子图形成一个由数个深度优先树组成的深度优先森林。Eπ中的边称为树枝。
和宽度优先搜索类似,深度优先在搜索过程中也为结点着色以表示结点的状态。每个顶点开始均为白色,搜索中被发现时置为灰色,结束时又被置成黑色(即当其邻接表被完全检索之后)。这一技巧可以保证每一顶点搜索结束时只存在于一棵深度优先树上,因此这些树都是分离的。
除了创建一个深度优先森林外,深度优先搜索同时为每个结点加盖时间戳。每个结点v有两个时间戳:当结点v第一次被发现(并置成灰色)时记录下第一个时间戳d[v],当结束检查v的邻接表时(并置v为黑色)记录下第二个时间截f[v]。许多图的算法中都用到时间戳,他们对推算深度优先搜索进行情况是很有帮助的。 下列过程DFS记录了何时在变量d[u]中发现结点u以及何时在变量f[u]中完成对结点u的检索。这些时间戳为1到2|V|之间的整数,因为对每一个v中结点都对应一个发现事件和一个完成事件。对每一顶点u,有 d[u]<f[u]
(1) 在时刻d[u]前结点u为白色,在时刻d[u]和f[u]之间为灰色,以后就变为黑色。 下面的伪代码就是一个基本的深度优先搜索算法,输人图G可以是有向图或无向图,变量time是一个全局变量,用于记录时间戳。
procere DFS(G); - begin
- 1 for 每个顶点u∈V[G] do
- begin
- 2 color[u]←White;
- 3 π[u]←NIL;
- end;
- 4 time←0;
- 5 for 每个顶点u∈V[G] do
- 6 if color[u]=White
- 7 then DFS_Visit(G,u);
- end; -
- procere DFS_Visit(G,u);
- begin
- 1 color[u]←Gray; Δ白色结点u已被发现
- 2 d[u]←time←time+1;
- 3 for 每个顶点v∈Adj[u] do Δ探寻边(u,v)
- 4 if color[v]=White
- then begin
- 5 π[v]←u;
- 6 DFS_Visit(G,v);
- end;
- 7 color[u]←Black; Δ完成后置u为黑色
- 8 f[u]←time←time+1;
- end;
- 图2说明了DFS在图1所示的图上执行的过程。被算法探寻到的边要么为阴影覆盖 (如果该边为树枝),要么成虚线形式 (其他情况)。对于非树枝的边,分别标明B(或F)以表示反向边、交叉边或无向边。我们用发现时刻Z完成时刻的形式对结点加盖时间戳。
图2 深度优先搜索算法DFS在有向图图1上的执行过程
过程DFS执行如下。第1-3行把所有结点置为白色,所有π域初始化为NIL。第4行复位全局变量time,第5-7行依次检索V中的结点,发现白色结点时,调用DFS_Visit去访问该结点。每次通过第7行调用DFS_Visit时,结点u就成为深度优先森林中一棵新树的根,当DFS返回时,每个结点u都对应于一个发现时刻d[u]和一个完成时刻f[u]。 每次开始调用DFS_Visit(u)时结点u为白色,第1行置u为灰色,第2行使全局时间变量增值并存于d[u]中,从而记录下发现时刻d[u],第3-6行检查和u相邻接的每个顶点v,且若v为白色结点,则递归访问结点v。在第3行语句中考虑到每一个结点v∈Adj[u]时,我们可以说边(u,v)被深度优先搜索探寻。最后当以u为起点的所有边都被探寻后,第7-8行语句置u为黑色并记录下完成时间f[u]。
算法DFS运行时间的复杂性如何?DFS中第1-2行和5-7行的循环占用时间为O(V),这不包括执行调用DFS_Visit过程语句所耗费的时间。事实上对每个顶点v∈V,过程DFS_Visit仅被调用一次,因为DFS_Visit仅适用于白色结点且过程首先进行的就是置结点为灰色,在DFS_Visit(v)执行过程中,第3-6行的循环要执行|Adj[v]|次。因为∑v∈V|Adj[v]| =θ(E),因此执行过程DFS_Visit中第2-5行语句占用的整个时间应为θ(E)。所以DFS的运行时间为θ(V+E)。

④ DFS的算法详解

首先选定图的类别(有向图、无向图),再选定图的存储结构,根据输入的顶点或者边建立图;并把相应的邻接表或者邻接矩阵输出; 根据已有的邻接矩阵或邻接表用递归方法编写深度优先搜索遍历算法,并输出遍历结果; 图的深度遍历原则:
1 如果有可能,访问一个领接的未访问的节点,标记它,并把它放入栈中。
2 当不能执行规则 1 时,如果栈不为空,则从栈中弹出一个元素。
3 如果不能执行规则 1 和规则 2 时,则完成了遍历。
代码中的图使用的是Graph 图-邻接矩阵法 来表示,其他的表示法请见:Graph 图-邻接表法
代码中的Stack为辅助结构,用来记载访问过的节点。栈的详细描述可以见:ArrayStack 栈 ,LinkedStack 栈 。
Vertex表示图中的节点,其中包含访问,是否访问,清除访问标志的方法。 Graph.main:提供简单测试。代码可以以指定下标的节点开始作深度遍历。 代码比较简单,除了Graph.dsf(int i)深度优先遍历算法外没有过多注释。

⑤ dfs算法是什么

DFS是深度优先搜索算法。

深度优先搜索算法,又称DFS(Depth First Search)。DFS算法是一种搜索算法,而搜索算法实质上是一种枚举,即借助计算机的高性能来有目的地枚举一个问题的部分情况或这个问题的所有情况,进而求出问题的解的一种方法。

分类:

1、 顺序性剪枝

若一些题的搜索顺序对答案无影响,那么搜索顺序的不同会导致搜索树形态的改变,优先搜索分支较少的阶段,此时能减少搜索的规模。

2、 重复性剪枝

在搜索的时候如果有多种方式可以到达一个状态,那么只需要搜索一个分支就可以了。

3、 可行性剪枝

可行性剪枝是对搜索正确性的一个保证,当分支在递归边界的时候回溯。

⑥ DFS(深搜)算法

深度优先搜索算法(Depth-First-Search) :是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。

话说大诗人李白,一生好饮。幸好他从不开车。

一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:

无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。

这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。

请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。

注意:通过浏览器提交答案。答案是个整数。不要书写任何多余的内容。

答案:14

小明刚刚看完电影《第39级台阶》,离开电影院的时候,他数了数礼堂前的台阶数,恰好是39级!
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
请你利用计算机的优势,帮助小明寻找答案。

要求提交的是一个整数。
注意:不要提交解答过程,或其它的辅助说明文字。

⑦ 求有权无向图的DFS算法

深度优先遍历类似于树的先序遍历,俗称一条路走到黑,然后再考虑回溯的问题,回溯到最近访问的顶点并看它是否还有相邻顶点未访问,若无继续往前回溯。

我下面写写核心伪代码,其他诸如图的类型定义、还有你要对每个结点做的具体操作(我在代码中用visit()函数来代替了,具体做啥操作根据题目来)我就不写了。
bool visited[MSX_VERTEX_NUM]; //标记访问数组
void DFS_Traverse(Grath G) //对图G进行DFS
{
for(v=0;v<G.vexnum;++v)

{
visited[v]=false; //初始化已访问标记数据

}
for(v=0;v<G.vexnum;++v) //假设从v=0开始遍历

{
if(!visited[v])

DFS(G,v);

}

}
void DFS(Graph G,int v) //从顶点v出发,用递归的思想,深度优先遍历
{
visit(v); //这里的visit()就是对顶点v的具体操作,题目是啥就自己写啥

visited[v]=true; //标记已访问

for(w=FirstNeighbor(G,v);w>=0;w=NextNeighbor(G,v,w))

//从最近结点开始,依次找相邻结点
{
if(!visited[w]) //w为还未访问的相邻结点

{
DFS(G,w);

}
}
}

⑧ 图遍历算法之DFS/BFS

在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:

图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。

深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。

(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:

遍历次序依次为:F -B -A-D- C-E-G- I-H.

(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:

遍历次序依次为:A -B - C - D - E - F - G -H-I

(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.

(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:

遍历次序依次为:A-C-E-D-B-H-I-G-F.

pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树

遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。

树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。

BFS的遍历方法图示如下:

遍历次序依次为: F-B-G-A-D-I-C-E-H.

图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。

使用方法:

参数说明:

示例:

结果展示:

DFS R输出节点排序:

使用方法:

参数含义同dfs
示例:

结果展示:

BFS R输出节点排序:

以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:

示例:

输出结果:

示例:

输出结果:

[1] 维基网络: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/

⑨ 深度优先法(DFS)算法

深度优先法:O(n+e)是指在图形中,如果以顶点v作为起始开始查找,我们从顶点v的邻接列表选择一个未查找过的顶点w,由定点w继续进行深度优先法的查找,没查找一个顶点,便把该顶点存放在堆栈。知道查找到已经没有任何邻接未遍历的顶点u,此时回到取出堆栈中的顶点,回到上一层顶点继续查找未遍历的顶点,知道所有的顶点皆查找过为止。over~!

阅读全文

与dfs算法动图相关的资料

热点内容
phpsae源码 浏览:853
为什么安卓手机一直要权限 浏览:227
汇编程序的伪指令 浏览:803
苹果7怎么更新app 浏览:318
c语言常用算法pdf 浏览:960
编程如何让画面动起来 浏览:865
大龄女程序员未来发展 浏览:976
数学书籍pdf 浏览:506
加密门禁卡写入成功无法开门 浏览:464
齿轮传动pdf 浏览:52
alpinelinux 浏览:150
手机端app的扫码功能在哪里 浏览:227
少儿编程中小班英语教案 浏览:452
锁屏密码加密手机怎么解除 浏览:205
linuxlostfound 浏览:135
征途服务器ip地址 浏览:330
git提交代码命令行 浏览:165
什么叫浏览器服务器结构 浏览:157
于谦聊天哪个app 浏览:449
小鹏汽车nlp算法工程师薪资 浏览:881