Ⅰ 数学乘法简便计算方法技巧
要有六大方法: “凑整巧算”——运用加法的交换律、结合律进行计算。运用乘法的交换律、结合律进行简算。 运用减法的性质进行简算,同时注意逆进行。运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。运用乘法分配律进行简算。 混合运算(根据混合运算的法则)。 具体解释:一、“凑整巧算”——运用加法的交换律、结合律进行计算。凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。加法交换律 定义:两个数交换位置和不变,公式:A+B =B+A,例如:6+18+4=6+4+18 加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2) 引申——凑整例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 二、运用乘法的交换律、结合律进行简算。乘法交换律定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 乘法结合律定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4)三、运用减法的性质进行简算,同时注意逆进行。减法 定义:一个数连续减去两个数,可
Ⅱ 四年级简便运算的技巧和方法是什么
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
Ⅲ 简便算法怎么做
数学运算法则表 1、加减法把两个数合并一个数的运算叫做加法。相加的各个数都叫做加数,加得的数叫做和。例如:4(加数)+3(加数)=7(和)已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。减法是加法的逆运算。在减法里,已知的两个加数的和叫做被减数,已知的加数叫做减数,要求的那个加数叫差。例如:7(被减数)-3(减数)=4(差) 2、乘除法求几个相同加数的和的简便运算叫做乘法。例如:3+3+3+3=12 也可以用乘法表示为: 3、3(被乘数)×4(乘数)=12(积)注:上面加法算式中的相同加数,在乘法算式中当被乘数;加法算式中的相同加数的个数,在乘法算式中当乘数;加法算是中的和,在乘法算式中叫做积。在乘法里,被乘数和乘数又叫做积的因数。如:在3×4=12中,3和4又可以叫做因数。已知两个乘数的积与其中一个乘数,求另一个乘数的运算叫做除法。一个数乘小数就是这个数得十分之几 百分之几......是多少。 3、四则混合运算(1)没有括号的同级运算(加和减是一级,乘和除是一级):运算顺序是从左向右依次演算。
Ⅳ 1-6年级数学所有简便算法公式 (描述须清楚易懂)我会给你财富.
1到6年级数学公式
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数.
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数.
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数.
【平均数问题公式】
总数量÷总份数=平均数.
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和.
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时.
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间.
1 .每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2. 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3. 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4. 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5. 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1. 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2. 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3. 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 .长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 .三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6. 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7. 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9. 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10. 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
这些应该可以了吧?
Ⅳ 简便计算方法
常用的简便算法有以下几种
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5
计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道题目中,利用第一种方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等于5100加上2200等于6300
Ⅵ 三个强盗三个商人过河 简单的入门级别算法
3个商人和3个强盗要过一条河,如果在河的任意一边商人数目比强盗少,商人就会被抢劫,如何过河?
河边有一只小船,小船上原本无人,小船最多能坐2人,他们都不会去游泳,要保证商人不会被抢劫。
先简化一下商人和强盗:
商人为0 强盗为X 河为-
初始情况:商人和强盗都在河的一边,即000xxx-
操作步骤:
1商人1强盗过去 一商人回000xx-x
2强盗过去 1强盗回 000x-xx
2商人过去 1商人1强盗回 00xx-x0
2商人过去 1强盗回 xxx-000
2强盗过去 1强盗回 xx-000x
2强盗过去 完毕 -xxx000
Ⅶ 简便算法怎么做
简便运算
这是小学数学计算题中最常见的一种。从学生一开始接触计算就从各个不同的角度渗透了简便运算的思想,到了四年级在计算题中简便运算则做为独立的题型正式出现,它是计算题中最为灵活的一种,能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力将起到非常大的作用。 何谓简便运算,这是一个非常简单的问题,但要正确地理解它,决不能为了追求简便的形式而进行简便运算。对此,我的理解是:简便运算应该是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度及正确率,使复杂的计算变得简单[2] 。也就是说:最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。下面就我在教学中遇到的情况,谈谈我的看法。
1、“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给学生布置了这道题后,我以为学生会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是当我批改学生的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
显然第③种简算是错误的,因为它违反了四则运算顺序,其简算结果绝对不等于原题的结果。问题就出在第①种和第②种解法上,第①种解法的简算过程非常标准,无懈可击;第②种解法看上去好象不太标准,但是也有道理。于是,我组织学生进行了讨论,结果学生分成了截然相反的两派。一方认为:第①种解法绝对正确,而第②种解法不规范,没有明确标明简便运算的过程,所以不能算对。另一方认为:第①种解法非常标准,肯定正确无疑,但是,第②种解法也是对的,因为按运算顺序从左往右,先算4.9-4.9,实际上就得0,其实就不用算,直接计算0.1+0.1就行了,简算过程其实也很明确。