导航:首页 > 源码编译 > 多项式插值算法代码

多项式插值算法代码

发布时间:2023-01-14 20:09:10

Ⅰ 求用c语言编写牛顿插值法

牛顿插值法:

#include<stdio.h>
#include<alloc.h>
float Language(float *x,float *y,float xx,int n)
{
int i,j;
float *a,yy=0.0;
a=(float *)malloc(n*sizeof(float));
for(i=0;i<=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if(j!=i)a[i]*=(xx-x[j])/(x[i]-x[j]);
yy+=a[i];
}
free(a);
return yy;
}
void main()
{
float x[4]={0.56160,0.5628,0.56401,0.56521};
float y[4]={0.82741,0.82659,0.82577,0.82495};
float xx=0.5635,yy;
float Language(float *,float *,float,int);
yy=Language(x,y,xx,4);
printf("x=%f,y=%f\n",xx,yy);
getchar();
}
‍2.牛顿插值法#include<stdio.h>
#include<math.h>
#define N 4
void Difference(float *x,float *y,int n)
{
float *f;
int k,i;
f=(float *)malloc(n*sizeof(float));
for(k=1;k<=n;k++)
{
f[0]=y[k];
for(i=0;i<k;i++)
f[i+1]=(f[i]-y[i])/(x[k]-x[i]);
y[k]=f[k];
}
return;
}
main()
{
int i;
float varx=0.895,b;
float x[N+1]={0.4,0.55,0.65,0.8,0.9};
float y[N+1]={0.41075,0.57815,0.69675,0.88811,1.02652};
Difference(x,(float *)y,N);
b=y[N];
for(i=N-1;i>=0;i--)b=b*(varx-x[i])+y[i];
printf("Nn(%f)=%f",varx,b);
getchar();
}
留下个邮箱,我发给你:牛顿插值法的程序设计与应用

Ⅱ 用matlab 三次多项式函数插值算法怎么写 或者说下设计思路 设计主要结构 功能模块 流程

看看这个能不能帮到你:Matlab中插值函数汇总和使用说明:MATLAB中的插值函数为interp1,其调用格式为:yi=interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'nearest'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[129910182428272520181513];a=13;y1=interp1(x,y,a,'spline')结果为:27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi,'spline');plot(x,y,'o',xi,yi)命令1interp1功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi=interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。(2)yi=interp1(Y,xi)假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。(3)yi=interp1(x,Y,xi,method)用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline用它们执行三次样条函数插值;’pchip’:分段三次Hermite插值。对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB5.0中的三次插值。对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1将对超出的分量执行外插值算法。(4)yi=interp1(x,Y,xi,method,'extrap')对于超出x范围的xi中的分量将执行特殊的外插值法extrap。(5)yi=interp1(x,Y,xi,method,extrapval)确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。例1>>x=0:10;y=x.*sin(x);>>xx=0:.25:10;yy=interp1(x,y,xx);>>plot(x,y,'kd',xx,yy)例2>>year=1900:10:2010;>>proct=[75.99591.972105.711123.203131.669150.697179.323203.212226.505249.633256.344267.893];>>p1995=interp1(year,proct,1995)>>x=1900:1:2010;>>y=interp1(year,proct,x,'pchip');>>plot(year,proct,'o',x,y)插值结果为:p1995=252.9885命令2interp2功能二维数据内插值(表格查找)格式(1)ZI=interp2(X,Y,Z,XI,YI)返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(NotaNumber)。(2)ZI=interp2(Z,XI,YI)缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。(3)ZI=interp2(Z,n)作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。interp2(Z)等价于interp2(z,1)。(4)ZI=interp2(X,Y,Z,XI,YI,method)用指定的算法method计算二维插值:’linear’:双线性插值算法(缺省算法);’nearest’:最临近插值;’spline’:三次样条插值;’cubic’:双三次插值。例3:>>[X,Y]=meshgrid(-3:.25:3);>>Z=peaks(X,Y);>>[XI,YI]=meshgrid(-3:.125:3);>>ZZ=interp2(X,Y,Z,XI,YI);>>surfl(X,Y,Z);holdon;>>surfl(XI,YI,ZZ+15)>>axis([-33-33-520]);shadingflat>>holdoff例4:>>years=1950:10:1990;>>service=10:10:30;>>wage=[150.697199.592187.625179.323195.072250.287203.212179.092322.767226.505153.706426.730249.633120.281598.243];>>w=interp2(service,years,wage,15,1975)插值结果为:w=190.6288命令3interp3功能三维数据插值(查表)格式(1)VI=interp3(X,Y,Z,V,XI,YI,ZI)找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参量XI,YI,ZI是同型阵列或向量。若向量参量XI,YI,ZI是不同长度,不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩阵。其中Y1,Y2,Y3为用命令meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。(2)VI=interp3(V,XI,YI,ZI)缺省地,X=1:N,Y=1:M,Z=1:P,其中,[M,N,P]=size(V),再按上面的情形计算。(3)VI=interp3(V,n)作n次递归计算,在V的每两个元素之间插入它们的三维插值。这样,V的阶数将不断增加。interp3(V)等价于interp3(V,1)。(4)VI=interp3(,method)%用指定的算法method作插值计算:‘linear’:线性插值(缺省算法);‘cubic’:三次插值;‘spline’:三次样条插值;‘nearest’:最邻近插值。说明在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式。当X,Y,Z是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。例5>>[x,y,z,v]=flow(20);>>[xx,yy,zz]=meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);>>vv=interp3(x,y,z,v,xx,yy,zz);>>slice(xx,yy,zz,vv,[69.5],[12],[-2.2]);shadinginterp;colormapcool命令4interpft功能用快速Fourier算法作一维插值格式(1)y=interpft(x,n)返回包含周期函数x在重采样的n个等距的点的插值y。若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n。注意的是必须n≥m。若x为一矩阵,则按x的列进行计算。返回的矩阵y有与x相同的列数,但有n行。(2)y=interpft(x,n,dim)沿着指定的方向dim进行计算命令5griddata功能数据格点格式(1)ZI=griddata(x,y,z,XI,YI)用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。griddata将返回曲面z在点(XI,YI)处的插值。曲面总是经过这些数据点(x,y,z)的。输入参量(XI,YI)通常是规则的格点(像用命令meshgrid生成的一样)。XI可以是一行向量,这时XI指定一有常数列向量的矩阵。类似地,YI可以是一列向量,它指定一有常数行向量的矩阵。(2)[XI,YI,ZI]=griddata(x,y,z,xi,yi)返回的矩阵ZI含义同上,同时,返回的矩阵XI,YI是由行向量xi与列向量yi用命令meshgrid生成的。(3)[XI,YI,ZI]=griddata(.,method)用指定的算法method计算:‘linear’:基于三角形的线性插值(缺省算法);‘cubic’:基于三角形的三次插值;‘nearest’:最邻近插值法;‘v4’:MATLAB4中的griddata算法。命令6spline功能三次样条数据插值格式(1)yy=spline(x,y,xx)对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式y=p(x),以逼近每对数据(x,y)点间的曲线。过两点(xi,yi)和(xi+1,yi+1)只能确定一条直线,而通过一点的三次多项式曲线有无穷多条。为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件(因为三次多项式有4个系数):a.三次多项式在点(xi,yi)处有:p¢i(xi)=p¢i(xi);b.三次多项式在点(xi+1,yi+1)处有:p¢i(xi+1)=pi¢(xi+1);c.p(x)在点(xi,yi)处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);d.p(x)在点(xi,yi)处的曲率是连续的;对于第一个和最后一个多项式,人为地规定如下条件:①.p¢1¢(x)=p¢2¢(x)②.p¢n¢(x)=p¢n¢-1(x)上述两个条件称为非结点(not-a-knot)条件。综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:ïïîïïí죣££££=nnn+1223112p(x)xxxp(x)xxxp(x)xxxp(x)LLLL其中每段pi(x)都是三次多项式。该命令用三次样条插值计算出由向量x与y确定的一元函数y=f(x)在点xx处的值。若参量y是一矩阵,则以y的每一列和x配对,再分别计算由它们确定的函数在点xx处的值。则yy是一阶数为length(xx)*size(y,2)的矩阵。(2)pp=spline(x,y)返回由向量x与y确定的分段样条多项式的系数矩阵pp,它可用于命令ppval、unmkpp的计算。例6对离散地分布在y=exp(x)sin(x)函数曲线上的数据点进行样条插值计算:>>x=[024581212.817.219.920];y=exp(x).*sin(x);>>xx=0:.25:20;>>yy=spline(x,y,xx);>>plot(x,y,'o',xx,yy)命令7interpn功能n维数据插值(查表)格式(1)VI=interpn(X1,X2,,,Xn,V,Y1,Y2,?,Yn)%返回由参量X1,X2,…,Xn,V确定的n元函数V=V(X1,X2,…,Xn)在点(Y1,Y2,…,Yn)处的插值。参量Y1,Y2,…,Yn是同型的矩阵或向量。若Y1,Y2,…,Yn是向量,则可以是不同长度,不同方向(行或列)的向量。它们将通过命令ndgrid生成同型的矩阵,再作计算。若点(Y1,Y2,…,Yn)中有位于点(X1,X2,…,Xn)之外的点,则相应地返回特殊变量NaN。VI=interpn(V,Y1,Y2,?,Yn)%缺省地,X1=1:size(V,1),X2=1:size(V,2),…,Xn=1:size(V,n),再按上面的情形计算。VI=interpn(V,ntimes)%作ntimes次递归计算,在V的每两个元素之间插入它们的n维插值。这样,V的阶数将不断增加。interpn(V)等价于interpn(V,1)。VI=interpn(?,method)%用指定的算法method计算:‘linear’:线性插值(缺省算法);‘cubic’:三次插值;‘spline’:三次样条插值法;‘nearest’:最邻近插值算法。命令8meshgrid功能生成用于画三维图形的矩阵数据。格式[X,Y]=meshgrid(x,y)将由向量x,y(可以是不同方向的)指定的区域[min(x),max(x),min(y),max(y)]用直线x=x(i),y=y(j)(i=1,2,…,length(x),j=1,2,…,length(y))进行划分。这样,得到了length(x)*length(y)个点,这些点的横坐标用矩阵X表示,X的每个行向量与向量x相同;这些点的纵坐标用矩阵Y表示,Y的每个列向量与向量y相同。其中X,Y可用于计算二元函数z=f(x,y)与三维图形中xy平面矩形定义域的划分或曲面作图。[X,Y]=meshgrid(x)%等价于[X,Y]=meshgrid(x,x)。[X,Y,Z]=meshgrid(x,y,z)%生成三维阵列X,Y,Z,用于计算三元函数v=f(x,y,z)或三维容积图。例7[X,Y]=meshgrid(1:3,10:14)计算结果为:X=123123123123123Y=命令9ndgrid功能生成用于多维函数计算或多维插值用的阵列格式[X1,X2,…,Xn]=ndgrid(x1,x2,…,xn)%把通过向量x1,x2,x3…,xn指定的区域转换为数组x1,x2,x3,…,xn。这样,得到了length(x1)*length(x2)*…*length(xn)个点,这些点的第一维坐标用矩阵X1表示,X1的每个第一维向量与向量x1相同;这些点的第二维坐标用矩阵X2表示,X2的每个第二维向量与向量x2相同;如此等等。其中X1,X2,…,Xn可用于计算多元函数y=f(x1,x2,…,xn)以及多维插值命令用到的阵列。[X1,X2,…,Xn]=ndgrid(x)%等价于[X1,X2,…,Xn]=ndgrid(x,x,…,x)命令10table1功能一维查表格式Y=table1(TAB,X0)%返回用表格矩阵TAB中的行线性插值元素,对X0(TAB的第一列查找X0)进行线性插值得到的结果Y。矩阵TAB是第一列包含关键值,而其他列包含数据的矩阵。X0中的每一元素将相应地返回一线性插值行向量。矩阵TAB的第一列必须是单调的。例8>>tab=[(1:4)'hilb(4)]>>y=table1(tab,[12.33.64])查表结果为:>>tab=[(1:4)'hilb(4)]>>y=table1(tab,[12.33.64])

Ⅲ matlab 内插法问题!求如何编

具体代码如下所示:

x=0:2:4*pi;

y=sin(x).*exp(-x/5);

plot(x,y,'k*')

hold on

xi=0:0.1:4*pi;

y1=interp1(x,y,xi,'linear');

y2=interp1(x,y,xi,'spline');

y3=interp1(x,y,xi,'cubic');

pp=polyfit(x,y,6);

y4=polyval(pp,xi);

plot(xi,y1,'b-')

plot(xi,y2,'m--')

plot(xi,y3,'c.-')

plot(xi,y4,'g:')

legend('raw data','linear','spline','cubic','polyfit')

Ⅳ 请列一下插值法的计算公式,并举个例子。

举个例子。

2008年1月1日甲公司购入乙公司当日发行的面值600 000元、期限3年、票面利率8%、每年年末付息且到期还本的债券作为可供出售金融资产核算,实际支付的购买价款为620 000元。

则甲公司2008年12月31日因该可供出售金融资产应确认的投资收益是()元。(已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)

题目未给出实际利率,需要先计算出实际利率。600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000,采用内插法计算,得出r=6.35%。甲公司2008年12月31日因该可供出售金融资产应确认的投资收益=620 000×6.35%=39 370(元)。

插值法计算过程如下:

已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)

600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000

R=6%时

600000*0.8396+600000*8%*2.673=503760+128304=632064

R=7%时

600000*0.8163+600000*8%*2.2463=489780+107823=597603

6% 632064

r 620000

7% 597603

(6%-7%)/(6%-R)=(632064-597603)/(632064-620000)

解得R=6.35%

注意上面的式子的数字顺序可以变的,但一定要对应。如可以为

(R-7%)/(7%-6%)=(620000-597603)/(597603-632064)也是可以的,当然还有其他的顺序。"

(4)多项式插值算法代码扩展阅读:

若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。

如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。

如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。

在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。

Ⅳ 拉格朗日插值公式 C语言实现 runge现象

拉格朗日插值多项式 ,用于离散数据的拟合 C/C++ code
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/
{ int i,j;
float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项式*/
a=(float *)malloc(n*sizeof(float));
for(i=0;i<=n-1;i++)
{ a[i]=y[i];
for(j=0;j<=n-1;j++)
if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);
yy+=a[i];
}
free(a);
return yy;
}
main()
{ int i,n;
float x[20],y[20],xx,yy;
printf("Input n:");
scanf("%d",&n);
if(n>=20) {printf("Error!The value of n must in (0,20)."); getch();return 1;}
if(n<=0) {printf("Error! The value of n must in (0,20)."); getch(); return 1;}
for(i=0;i<=n-1;i++)
{ printf("x[%d]:",i);
scanf("%f",&x[i]);
}
printf("\n");
for(i=0;i<=n-1;i++)
{ printf("y[%d]:",i);scanf("%f",&y[i]);}
printf("\n");
printf("Input xx:");
scanf("%f",&xx);
yy=lagrange(x,y,xx,n);
printf("x=%f,y=%f\n",xx,yy);
getch();
}

Ⅵ 用matlab编写拉格朗日插值算法的程序

做了一个测试,希望有所帮助。代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,
% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果
% x -2.15 -1.00 0.01 1.02 2.03 3.25
% y 17.03 7.24 1.05 2.03 17.06 23.05
function main()
clc;
x = [-2.15 -1.00 0.01 1.02 2.03 3.25];
y = [17.03 7.24 1.05 2.03 17.06 23.05 ];
x0 = 0.6;
f = Language(x,y,x0)function f = Language(x,y,x0)
%求已知数据点的拉格朗日插值多项式
%已知数据点的x坐标向量: x
%已知数据点的y坐标向量: y
%插值点的x坐标: x0
%求得的拉格朗日插值多项式或在x0处的插值: fsyms t l;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return; %检错
endh=sym(0);
for (i=1:n)
l=sym(y(i));
for(j=1:i-1)
l=l*(t-x(j))/(x(i)-x(j));
end;
for(j=i+1:n)
l=l*(t-x(j))/(x(i)-x(j));
end;

h=h+l;
end
simplify(h);if(nargin == 3)
f = subs (h,'t',x0); %计算插值点的函数值
else
f=collect(h);
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end结果:
f = 0.0201>>

Ⅶ 如何用matlab实现插值算法

实例展示

1
先看一个实例,最后再来说明一维插值在matlab中的用法。实例如下图,用13个节点作三种插值,并比较结果。

2
首先启动matlab,选择编辑器,再新建一个命令文件。

3
然后,在编辑器窗口中输入本题的代码。如下图所示。并保存,此处命名为yiwei。

4
最后再命令行窗口处输入yiwei,并敲入键盘上的enter建。最终得到的结果是插值与原来的13个数据点之间的比较图,可以看出结果很好。

END
命令解释

1
通过上面的例子,也知道了matlab进行一维插值的命令是interp1.
该命令的形式为y1=interp1(x0,y0,x1,'method').
功能:根据已知的数据(x0,y0),用method方法进行插值,然后计算x1对应的函数值y1.
2
其中的参数及其注意事项。
x0,y0是已知的数据向量,其中x应以升序或者降序排列,x1是插值点的自变量坐标向量;method是用来选择插值算法的,它可以取:‘linear’(线性插值)、‘cubic’(三次多项式插值)、‘nearst’(最近插值)、‘spline’(三次样条插值)。

Ⅷ 牛顿插值多项式的计算步骤

牛顿插值多项式的计算步骤如下:

牛顿插值多项式:(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),……,(xn,f(xn))。牛顿插值法相对于拉格朗日插值法具有承袭性的优势,即在增加额外的插值点时,可以利用之前的运算结果以降低运算量。

插值法利用函数f(x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。

1.差商(均差)及其性质 :

5. 牛顿插值多项式小结。

优点:计算简单

缺点:和拉格朗日插值方法相同,插值曲线在节点处有尖点,不光滑,节点处不可导。

Ⅸ matlab 三次样条插值法拟合三次多项式

1、m次多项式插值法:利用Matlab里的命令:
a = spline(x,y,xx)
其中,x,y为给定点的矩阵,矩阵 a 为矩阵xx所有点对应的拟合值矩 阵。

2、m次拟合法:a = polyfit(x,y,m)
其中,x,y为给定点的矩阵,前者为自变量矩阵,后者为因变量矩阵。m为多项式的次数, a为拟合出来的m次多项式的系数矩阵。

3、在这里x、y都是1*7的矩阵。至于最基本的赋值、创建变量的知识还是要自己看看啊、、、不难的、、

阅读全文

与多项式插值算法代码相关的资料

热点内容
java和python交互 浏览:644
贵州网络服务器机柜云主机 浏览:265
未来番禺程序员待遇 浏览:211
安卓安智部落冲突密码怎么改 浏览:648
http协议单片机 浏览:73
pdfdocument 浏览:556
gcc编译vi文件 浏览:63
安卓连airpods怎么找耳机 浏览:927
加密货币转账教程 浏览:229
程序员小灰hashmap 浏览:838
国语pdf版 浏览:184
少儿编程作品美丽的小房子 浏览:974
服务器卡在网页上怎么办 浏览:54
用python自制编译器 浏览:951
android分享新浪微博客户端 浏览:26
系统中服务器在哪里下载地址 浏览:1001
新a4安卓手机怎么投屏 浏览:173
pdftoemf 浏览:886
java接口可以实现接口吗 浏览:59
vb编程10个随机函数 浏览:22