1. 作业调度算法的选择原则有哪几个
批处理作业的调度算法主要有以下几种:
①先来先服务算法。原则上按照作业进入输入井的次序调度,如果作业的资源得不到满足,将会推迟调度,它的资源得到满足的时候会优先被调度进来。
优点:具有一定的公平性。
缺点:系统的吞吐率低,平均周转时间长,有大作业到来的时,许多小作业推迟调度。
②计算时间短的作业优先.优先调度计算时间短的作业进行调度,资源不满足的情况下推迟调度。在这种调度算法下,要求用户要对作业的计算时间预先有一个估计,调度以此为依据。
优点:由于被选中的作业计算时间,所以不能尽快地完成并退出系统,降低了作业的平均等待时间,提高了系统的吞吐率。
缺点:大作业会不满意,而且极限情况下使得某些大作业始终得不到调度。
③响应比高者优先算法。该算法考虑了计算时间等待时间,既考虑了计算时间短的作业优先,又考虑了大作业长期等待的问题。所谓响应比是按照以下公式来定义的:
响应比R=等待时间/计算时间
这里的计算时间是估计的作业计算时间,从公式看,计算时间越短,响应比越高;而另一方面,大作业等待时间越长,响应比也会越大。一个作业完成以后,需要重新计算一下在输入井中的各个作业的响应比,最高的将优先调度。
④优先数调度算法。为每一个作业指定一个优先数,优先数高的作业先被调度。对于优先数相等的作业采用先来先服务的策略。优先数的制定原则是:作业的缓急程序,估计的计算时间,作业的等待时间,资源申请情况等因素综合考虑。
⑤均衡调度算法。使用不同资源的进程同时执行,减少作业等待同类设备而耗费的时间,加快作业的执行。
2. 短作业优先调度算法和优先级为基础的非抢占式调度算法
短进程优先算法是一种非剥夺式算法,总是选取预计作业时间最短的作业优先运行;最短剩余时间优先算法是非剥夺式的,但可以改造成剥夺式的调度算法,称抢占式最短作业优先算法。
3. 第三章 进程调度的几种方式
进程调度概念:操作系统必须为多个,吗进程可能有竞争的请求分配计算机资源。对处理器而言,可分配的资源是在处理器上的执行时间,分配途径是调度。调度功能必须设计成可以满足多个目标,包括公平、任何进程都不会饿死、有效地使用处理器时间和低开销。此外,调度功能可能需要为某些进程的启动或结束考虑不同的优先级和实时最后期限。
这些年以来,调度已经成为深入研究的焦点,并且已经实现了许多不同的算法。如今,调度研究的重点是开发多处理系统,特别是用于多线程的。
下面简介几种调度算法。
一、先来先服务和短作业(进程)优先调度算法
1.先来先服务调度算法
先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
2.短作业(进程)优先调度算法
短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程优先(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。
二、高优先权优先调度算法
1.优先权调度算法的类型
为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。此算法常被用于批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度算法,还可用于实时系统中。当把该算法用于作业调度时,系统将从后备队列中选择若干个优先权最高的作业装入内存。当用于进程调度时,该算法是把处理机分配给就绪队列中优先权最高的进程,这时,又可进一步把该算法分成如下两种。
1) 非抢占式优先权算法
在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时,系统方可再将处理机重新分配给另一优先权最高的进程。这种调度算法主要用于批处理系统中;也可用于某些对实时性要求不严的实时系统中。
2) 抢占式优先权调度算法
在这种方式下,系统同样是把处理机分配给优先权最高的进程,使之执行。但在其执行期间,只要又出现了另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理机分配给新到的优先权最高的进程。因此,在采用这种调度算法时,是每当系统中出现一个新的就绪进程i 时,就将其优先权Pi与正在执行的进程j 的优先权Pj进行比较。如果Pi≤Pj,原进程Pj便继续执行;但如果是Pi>Pj,则立即停止Pj的执行,做进程切换,使i 进程投入执行。显然,这种抢占式的优先权调度算法能更好地满足紧迫作业的要求,故而常用于要求比较严格的实时系统中,以及对性能要求较高的批处理和分时系统中。
2.高响应比优先调度算法
在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。如果我们能为每个作业引入前面所述的动态优先权,并使作业的优先级随着等待时间的增加而以速率a 提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为:
由于等待时间与服务时间之和就是系统对该作业的响应时间,故该优先权又相当于响应比RP。据此,又可表示为:
由上式可以看出:
(1) 如果作业的等待时间相同,则要求服务的时间愈短,其优先权愈高,因而该算法有利于短作业。
(2) 当要求服务的时间相同时,作业的优先权决定于其等待时间,等待时间愈长,其优先权愈高,因而它实现的是先来先服务。
(3) 对于长作业,作业的优先级可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可获得处理机。简言之,该算法既照顾了短作业,又考虑了作业到达的先后次序,不会使长作业长期得不到服务。因此,该算法实现了一种较好的折衷。当然,在利用该算法时,每要进行调度之前,都须先做响应比的计算,这会增加系统开销。
三、基于时间片的轮转调度算法
1.时间片轮转法
1) 基本原理
在早期的时间片轮转法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU 分配给队首进程,并令其执行一个时间片。时间片的大小从几ms 到几百ms。当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。
2.多级反馈队列调度算法
前面介绍的各种用作进程调度的算法都有一定的局限性。如短进程优先的调度算法,仅照顾了短进程而忽略了长进程,而且如果并未指明进程的长度,则短进程优先和基于进程长度的抢占式调度算法都将无法使用。而多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。
(1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。
(2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。
(3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。
4. 作业调度的短作业优先
短作业优先(SJF, Shortest Job First)又称为“短进程优先”SPN(Shortest Process Next);这是对FCFS算法的改进,其目标是减少平均周转时间。 (1) 优点:
比FCFS改善平均周转时间和平均带权周转时间,缩短作业的等待时间;
提高系统的吞吐量;
(2) 缺点:
对长作业非常不利,可能长时间得不到执行;
未能依据作业的紧迫程度来划分执行的优先级;
难以准确估计作业(进程)的执行时间,从而影响调度性能。 “最短剩余时间优先”SRT(Shortest Remaining Time)(允许比当前进程剩余时间更短的进程来抢占)
“最高响应比优先”HRRN(Highest Response Ratio Next)(响应比R = (等待时间 + 要求执行时间) / 要求执行时间,是FCFS和SJF的折衷)
最高响应比优先法(HRN,Highest Response_ratio Next)是对FCFS方式和SJF方式的一种综合平衡。FCFS方式只考虑每个作业的等待时间而未考虑执行时间的长短,而SJF方式只考虑执行时间而未考虑等待时间的长短。因此,这两种调度算法在某些极端情况下会带来某些不便。HRN调度策略同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。
响应比R定义如下: R =(W+T)/T = 1+W/T
其中T为该作业估计需要的执行时间,W为作业在后备状态队列中的等待时间。每当要进行作业调度时,系统计算每个作业的响应比,选择其中R最大者投入执行。这样,即使是长作业,随着它等待时间的增加,W / T也就随着增加,也就有机会获得调度执行。这种算法是介于FCFS和SJF之间的一种折中算法。由于长作业也有机会投入运行,在同一时间内处理的作业数显然要少于SJF法,从而采用HRN方式时其吞吐量将小于采用SJF 法时的吞吐量。另外,由于每次调度前要计算响应比,系统开销也要相应增加。
5. 什么是短作业优先的作业调度算法
短作业优先(SJF, Shortest Job First)又称为“短进程优先”SPN(Shortest Process Next);这是对FCFS算法的改进,其目标是减少平均周转时间.
定义
对预计执行时间短的作业(进程)优先分派处理机.通常后来的短作业不抢先正在执行的作业.
6. 最短作业优先算法
以下是最短作业优先算法
最短作业优先调度算法是对预计执行时间短的作业(进程)优先分派处理机,通常后来的短作业不抢先正在执行的作业。这种算法称为这种算法会根据作业长短,也就是作业服务时间的多少来调度作业,服务时间短的会被优先调度执行。
通常情况下,对于简单的时间触发式调度器来说,待命任务列表的数据结构的设计要尽可能缩短最坏情况下,程序在调度器关键部分的执行时间,以防止其他任务一直在待命列表中,无法及时执行。
因此,在这种调度器中,应尽可能避免抢占式任务,甚至应该关闭调度器之外的所有中断。当然,待命任务列表的数据结构也应根据这个系统需要的最大任务数量做进一步的优化。
7. 什么是短作业优先的作业调度算法
1.先来先服务调度算法(FCFS):就是按照各个作业进入系统的自然次序来调度作业。这种调度算法的优点是实现简单,公平。其缺点是没有考虑到系统中各种资源的综合使用情况,往往使短作业的用户不满意,因为短作业等待处理的时间可能比实际运行时间长得多。
2.短作业优先调度算法(SPF): 就是优先调度并处理短作业,所谓短是指作业的运行时间短。而在作业未投入运行时,并不能知道它实际的运行时间的长短,因此需要用户在提交作业时同时提交作业运行时间的估计值。
3.最高响应比优先算法(HRN):FCFS可能造成短作业用户不满,SPF可能使得长作业用户不满,于是提出HRN,选择响应比最高的作业运行。响应比=1+作业等待时间/作业处理时间。
4. 基于优先数调度算法(HPF):每一个作业规定一个表示该作业优先级别的整数,当需要将新的作业由输入井调入内存处理时,优先选择优先数最高的作业。
5.均衡调度算法,即多级队列调度算法
基本概念:
作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)
作业平均周转时间(T)=周转时间/作业个数
作业带权周转时间(Wi)=周转时间/运行时间
响应比=(等待时间+运行时间)/运行时间
8. Linux - 进程调度
进程调度算法也称 CPU 调度算法,毕竟进程是由 CPU 调度的。
当 CPU 空闲时,操作系统就选择内存中的某个“就绪状态”的进程,并给其分配 CPU。
什么时候会发生 CPU 调度呢?通常有以下情况:
其中发生在 1 和 4 两种情况下的调度称为“非抢占式调度”,2 和 3 两种情况下发生的调度称为“抢占式调度”。
非抢占式的意思就是,当进程正在运行时,它就会一直运行,直到该进程完成或发生某个事件而被阻塞时,才会把 CPU 让给其他进程。
而抢占式调度,顾名思义就是进程正在运行的时候,可以被打断,使其把 CPU 让给其他进程。那抢占的原则一般有三种,分别是时间片原则、优先权原则、短作业优先原则。
你可能会好奇为什么第 3 种情况也会发生 CPU 调度呢?假设有一个进程是处于等待状态的,但是它的优先级比较高,如果该进程等待的事件发生了,它就会转到就绪状态,一旦它转到就绪状态,如果我们的调度算法是以优先级来进行调度的,那么它就会立马抢占正在运行的进程,所以这个时候就会发生 CPU 调度。
那第 2 种状态通常是时间片到的情况,因为时间片到了就会发生中断,于是就会抢占正在运行的进程,从而占用 CPU。
调度算法影响的是等待时间(进程在就绪队列中等待调度的时间总和),而不能影响进程真在使用 CPU 的时间和 I/O 时间。
最简单的一个调度算法,就是非抢占式的先来先服务(First Come First Severd, FCFS)算法了。
顾名思义,先来后到,每次从就绪队列选择最先进入队列的进程,然后一直运行,直到进程退出或被阻塞,才会继续从队列中选择第一个进程接着运行。
这似乎很公平,但是当一个长作业先运行了,那么后面的短作业等待的时间就会很长,不利于短作业。
FCFS 对长作业有利,适用于 CPU 繁忙型作业的系统,而不适用于 I/O 繁忙型作业的系统。
最短作业优先(Shortest Job First, SJF)调度算法同样也是顾名思义,它会优先选择运行时间最短的进程来运行,这有助于提高系统的吞吐量。
这显然对长作业不利,很容易造成一种极端现象。
比如,一个长作业在就绪队列等待运行,而这个就绪队列有非常多的短作业,那么就会使得长作业不断的往后推,周转时间变长,致使长作业长期不会被运行。
前面的“先来先服务调度算法”和“最短作业优先调度算法”都没有很好的权衡短作业和长作业。
那么,高响应比优先 (Highest Response Ratio Next, HRRN)调度算法主要是权衡了短作业和长作业。
每次进行进程调度时,先计算“响应比优先级”,然后把“响应比优先级”最高的进程投入运行,“响应比优先级”的计算公式:
从上面的公式,可以发现:
最古老、最简单、最公平且使用最广的算法就是时间片轮转(Round Robin, RR)调度算法。
每个进程被分配一个时间段,称为时间片(Quantum),即允许该进程在该时间段中运行。
另外,时间片的长度就是一个很关键的点:
通常时间片设为 20ms~50ms 通常是一个比较合理的折中值。
前面的“时间片轮转算法”做了个假设,即让所有的进程同等重要,也不偏袒谁,大家的运行时间都一样。
但是,对于多用户计算机系统就有不同的看法了,它们希望调度是有优先级的,即希望调度程序能从就绪队列中选择最高优先级的进程进行运行,这称为最高优先级(Highest Priority First,HPF)调度算法。
进程的优先级可以分为,静态优先级或动态优先级:
该算法也有两种处理优先级高的方法,非抢占式和抢占式:
但是依然有缺点,可能会导致低优先级的进程永远不会运行。
多级反馈队列(Multilevel Feedback Queue)调度算法是“时间片轮转算法”和“最高优先级算法”的综合和发展。
顾名思义:
工作原理:
设置了多个队列,赋予每个队列不同的优先级,每个队列优先级从高到低,同时优先级越高时间片越短;
新的进程会被放入到第一级队列的末尾,按先来先服务的原则排队等待被调度,如果在第一级队列规定的时间片没运行完成,则将其转入到第二级队列的末尾,以此类推,直至完成;
当较高优先级的队列为空,才调度较低优先级的队列中的进程运行。如果进程运行时,有新进程进入较高优先级的队列,则停止当前运行的进程并将其移入到原队列末尾,接着让较高优先级的进程运行;
可以发现,对于短作业可能可以在第一级队列很快被处理完。对于长作业,如果在第一级队列处理不完,可以移入下次队列等待被执行,虽然等待的时间变长了,但是运行时间也会更长了,所以该算法很好的兼顾了长短作业,同时有较好的响应时间。
整体架构如下,即调度策略是模块化设计的,调度器根据不同的进程依次遍历不同的调度策略,找到进程对应的调度策略,调度的结果即为选出一个可运行的进程指针,并将其加入到进程可运行队列中。
以一棵红黑树管理所有需要调度的进程,
红黑树,左边节点小于右边节点的值,运行到目前为止vruntime最小的进程,同时考虑了CPU/IO和nice,总是找vruntime最小的线程调度。
vruntime = pruntime/weight × 1024;
vruntime是虚拟运行时间,pruntime是物理运行时间,weight权重由nice值决定(nice越低权重越高),则运行时间少、nice值低的的线程vruntime小,将得到优先调度。这是一个随运行而动态变化的过程。
9. SJF调度算法
SJF调度算法:最短作业优先算法SJF(Shortest Job First ),SJF算法以进入系统的作业所要求的CPU时间为标准,总选取估计计算时间最短的作业投入运行。
SJF 调度算法优缺点:算法易于实现。但效率不高,主要弱点是忽视了作业等待时间;会出现饥饿现象。SJF 调度算法可证明为最佳的,这是因为对于给定的一组进程, SJF 算法的平均等待时间最小。虽然 SJF 算法最佳,但是它不能在短期CPU 调度层次上加以实现。因为没有办法知道下一个 CPU 区间的长度。
SJF算法Gantt图:
进程 区间时间
PI 6
P2 8
P3 7
P4 3
进程 P1 的等待时间是 3 ms,进程P2的等待时间为 16 ms,进程P3的等待时间为 9ms,进程P4的等待时间为 0ms。因此,平均等待时间为(3 + 16 + 9 +0) / 4 = 7 ms。
10. 进程调度算法
FCFS调度算法属于不可剥夺算法。从表面上看,它对所有作业都是公平的,但若一个长作业先到达系统,就会使后面许多短作业等待很长时间,因此它不能作为分时系统和实时系统的主要调度策略。但它常被结合在其他调度策略中使用。例如,在使用优先级作为调度策略的系统中,往往对多个具有相同优先级的进程按FCFS原则处理。
FCFS调度算法的特点是算法简单,但效率低; 对长作业比较有利,但对短作业不利(相对SJF和高响应比);
FCFS调度算法有利于CPU繁忙型作业,而不利于I/O繁忙型作业。
短作业优先调度算法是一个非抢占策略,他的原则是下一次选择预计处理时间最短的进程,因此短进程将会越过长作业,跳至队列头。该算法即可用于作业调度,也可用于进程调度。 但是他对长作业不利,不能保证紧迫性作业(进程)被及时处理,作业的长短只是被估算出来的。
缺点:
该算法对长作业不利,SJF调度算法中长作业的周转时间会增加。更严重的是,如果有一长作业进入系统的后备队列,由于调度程序总是优先调度那些 (即使是后进来的)短作业,将导致长作业长期不被调度(“饥饿”现象,注意区分“死锁”。后者是系统环形等待,前者是调度策略问题)。
该算法完全未考虑作业的紧迫程度,因而不能保证紧迫性作业会被及时处理。
由于作业的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业优先调度。
SJF调度算法的平均等待时间、平均周转时间最少。
高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。
该算法中的响应比是指作业等待时间与运行比值,响应比公式定义如下:
响应比 =(等待时间+要求服务时间)/ 要求服务时间,即RR=(w+s)/s=1+w/s,因此 响应比一定是大于等于1的。
短作业与先后次序的兼顾,且不会使长作业长期得不到服务。
响应比计算系统开销,增加系统开销。
高响应比优先调度算法适合批处理系统,主要用于作业调度。
为了实现 RR 调度,我们将就绪队列视为进程的 FIFO 队列。新进程添加到就绪队列的尾部。CPU 调度程序从就绪队列中选择第一个进程,将定时器设置在一个时间片后中断,最后分派这个进程。
接下来,有两种情况可能发生。进程可能只需少于时间片的 CPU 执行。对于这种情况,进程本身会自动释放 CPU。调度程序接着处理就绪队列的下一个进程。否则,如果当前运行进程的 CPU 执行大于一个时间片,那么定时器会中断,进而中断操作系统。然后,进行上下文切换,再将进程加到就绪队列的尾部,接着 CPU 调度程序会选择就绪队列内的下一个进程。
采用 RR 策略的平均等待时间通常较长。
在 RR 调度算法中,没有进程被连续分配超过一个时间片的 CPU(除非它是唯一可运行的进程)。如果进程的 CPU 执行超过一个时间片,那么该进程会被抢占,并被放回到就绪队列。因此, RR调度算法是抢占的。
算法描述
1、进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。
2、首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:Q1,Q2,Q3三个队列,当且仅当在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。
3、对于同一个队列中的各个进程,按照FCFS分配时间片调度。比如Q1队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。
4、在最后一个队列QN中的各个进程,按照时间片轮转分配时间片调度。
5、在低优先级的队列中的进程在运行时,又有新到达的作业,此时须立即把正在运行的进程放回当前队列的队尾,然后把处理机分给高优先级进程。换而言之,任何时刻,只有当第1~i-1队列全部为空时,才会去执行第i队列的进程(抢占式)。特别说明,当再度运行到当前队列的该进程时,仅分配上次还未完成的时间片,不再分配该队列对应的完整时间片。