导航:首页 > 源码编译 > matlabimrotate源码

matlabimrotate源码

发布时间:2023-01-18 14:48:50

1. MATLAB图像处理imrotate

如果中间的图像没有黑色的点,就很简单了,直接用find(a==0)找到黑色的点的坐标,赋白就行。如果中间图有黑色,我写了个函数,可以把底面赋白,这程序其实不难,就是扫描赋值。
function [r]=back2white(a)
[in,jn]=size(a);
for i=1:3%先把“镜框”赋白,因为里边那个矩形没紧贴外框
for j=1:jn
if a(i,j)~=255
a(i,j)=255;
end
if a(in+1-i,j)~=255
a(in+1-i,j)=255;
end

end
for j=1:in%两竖边赋白
if a(j,i)~=255
a(j,i)=255;
end
if a(j,jn+1-i)~=255
a(j,jn+1-i)=255;
end
end
end
for i=4:in-3
j=4;
while(a(i,j)<250)%此处选250为了保险
a(i,j)=255;
j=j+1;
end
k=jn-3;
while(a(i,k)<250)
a(i,k)=255;
k=k-1;
end
end

r=a;
PR(r);

2. 求教,matlab图像歪斜矫正代码解释

将模板在图像上移动,和覆盖的图像块做卷积,响应超过阈值的部分为匹配到。

3. matlab怎样将图像水平镜像,再顺时针旋转45度,显示旋转后的图像。代码

imrotate(image, 180); %水平镜像
imrotate(image, -45); % 顺时针旋转45度

4. 求MATLAB代码

MATLAB实用源代码
1图像的读取及旋转
A=imread('');%读取图像
subplot(2,2,1),imshow(A),title('原始图像');%输出图像
I=rgb2gray(A);
subplot(2,2,2),imshow(A),title('灰度图像');
subplot(2,2,3),imhist(I),title('灰度图像直方图');%输出原图直方图
theta = 30;J = imrotate(I,theta);% Try varying the angle, theta.
subplot(2,2,4), imshow(J),title(‘旋转图像’)
2边缘检测
I=imread('C:\Users\HP\Desktop\平时总结\路飞.jpg');
subplot(2,2,1),imshow(I),title('原始图像');
I1=edge(I,'sobel');
subplot(2,2,2),imshow(I1),title('sobel边缘检测');
I2=edge(I,'prewitt');
subplot(2,2,3),imshow(I2),title('prewitt边缘检测');
I3=edge(I,'log');
subplot(2,2,4),imshow(I3),title('log边缘检测');
3图像反转
MATLAB 程序实现如下:
I=imread('xian.bmp');
J=double(I);
J=-J+(256-1);%图像反转线性变换
H=uint8(J);
subplot(1,2,1),imshow(I);
subplot(1,2,2),imshow(H);
4.灰度线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]
subplot(2,2,3),imshow(J);
title('线性变换图像[0.1 0.5]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]
subplot(2,2,4),imshow(K);
title('线性变换图像[0.3 0.7]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
5.非线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp');
I1=rgb2gray(I);
subplot(1,2,1),imshow(I1);
title(' 灰度图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
J=double(I1);
J=40*(log(J+1));
H=uint8(J);
subplot(1,2,2),imshow(H);
title(' 对数变换图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
4.直方图均衡化
MATLAB 程序实现如下:
I=imread('xian.bmp');
I=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I);
subplot(2,2,2);
imhist(I);
I1=histeq(I);
figure;
subplot(2,2,1);
imshow(I1);
subplot(2,2,2);
imhist(I1);
5. 线性平滑滤波器
用MATLAB实现领域平均法抑制噪声程序:
I=imread('xian.bmp');
subplot(231)
imshow(I)
title('原始图像')
I=rgb2gray(I);
I1=imnoise(I,'salt & pepper',0.02);
subplot(232)
imshow(I1)
title(' 添加椒盐噪声的图像')
k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波
k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波
k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波
subplot(233),imshow(k1);title('3*3 模板平滑滤波');
subplot(234),imshow(k2);title('5*5 模板平滑滤波');
subplot(235),imshow(k3);title('7*7 模板平滑滤波');
subplot(236),imshow(k4);title('9*9 模板平滑滤波');
6.中值滤波器
用MATLAB实现中值滤波程序如下:
I=imread('xian.bmp');
I=rgb2gray(I);
J=imnoise(I,'salt&pepper',0.02);
subplot(231),imshow(I);title('原图像');
subplot(232),imshow(J);title('添加椒盐噪声图像');
k1=medfilt2(J); %进行3*3模板中值滤波
k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波
k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波
k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波
subplot(233),imshow(k1);title('3*3模板中值滤波');
subplot(234),imshow(k2);title('5*5模板中值滤波 ');
subplot(235),imshow(k3);title('7*7模板中值滤波');
subplot(236),imshow(k4);title('9*9 模板中值滤波');
7.用Sobel算子和拉普拉斯对图像锐化:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on;%显示坐标系
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
H=fspecial('sobel');%选择sobel算子
J=filter2(H,I1); %卷积运算
subplot(2,2,3),imshow(J);
title('sobel算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on;%显示坐标系
h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子
J1=conv2(I1,h,'same');%卷积运算
subplot(2,2,4),imshow(J1);
title('拉普拉斯算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
8.梯度算子检测边缘
用 MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,3,1);
imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I1=im2bw(I);
subplot(2,3,2);
imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I2=edge(I1,'roberts');
figure;
subplot(2,3,3);
imshow(I2);
title('roberts算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=edge(I1,'sobel');
subplot(2,3,4);
imshow(I3);
title('sobel算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I4=edge(I1,'Prewitt');
subplot(2,3,5);
imshow(I4);
title('Prewitt算子分割结果 ');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
9.LOG算子检测边缘
用 MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像');
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'log');
subplot(2,2,3);
imshow(I2);
title('log算子分割结果');
10.Canny算子检测边 缘
用MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像')
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'canny');
subplot(2,2,3);
imshow(I2);
title('canny算子分割结果');
11.边界跟踪 (bwtraceboundary函数)
clc
clear all
I=imread('xian.bmp');
figure
imshow(I);
title('原始图像');
I1=rgb2gray(I); %将彩色图像转化灰度图像
threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限
BW=im2bw(I1, threshold); %将灰度图像转化为二值图像
figure
imshow(BW);
title('二值图像');
dim=size(BW);
col=round(dim(2)/2)-90; %计算起始点列坐标
row=find(BW(:,col),1); %计算起始点行坐标
connectivity=8;
num_points=180;
contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_points);
%提取边界
figure
imshow(I1);
hold on;
plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2);
title('边界跟踪图像');
12.Hough变换
I= imread('xian.bmp');
rotI=rgb2gray(I);
subplot(2,2,1);
imshow(rotI);
title('灰度图像');
axis([50,250,50,200]);
grid on;
axis on;
BW=edge(rotI,'prewitt');
subplot(2,2,2);
imshow(BW);
title('prewitt算子边缘检测 后图像');
axis([50,250,50,200]);
grid on;
axis on;
[H,T,R]=hough(BW);
subplot(2,2,3);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
title('霍夫变换图');
xlabel('\theta'),ylabel('\rho');
axis on , axis normal, hold on;
P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x=T(P(:,2));y=R(P(:,1));
plot(x,y,'s','color','white');
lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
subplot(2,2,4);,imshow(rotI);
title('霍夫变换图像检测');
axis([50,250,50,200]);
grid on;
axis on;
hold on;
max_len=0;
for k=1:length(lines)
xy=[lines(k).point1;lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
len=norm(lines(k).point1-lines(k).point2);
if(len>max_len)
max_len=len;
xy_long=xy;
end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
13.直方图阈值法
用 MATLAB实现直方图阈值法:
I=imread('xian.bmp');
I1=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I1);
title(' 灰度图像')
axis([50,250,50,200]);
grid on;%显示网格线
axis on; %显示坐标系
[m,n]=size(I1);%测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(I1==k))/(m*n);%计算每级灰度出现的概率,将其存入GP中相应位置
end
subplot(2,2,2),bar(0:255,GP,'g')%绘制直方图
title('灰度直方图')
xlabel('灰度值')
ylabel(' 出现概率')
I2=im2bw(I,150/255);
subplot(2,2,3),imshow(I2);
title('阈值150的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=im2bw(I,200/255); %
subplot(2,2,4),imshow(I3);
title('阈值200的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
14. 自动阈值法:Otsu法
用MATLAB实现Otsu算法
clc
clear all
I=imread('xian.bmp');
subplot(1,2,1),imshow(I);
title('原始图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
level=graythresh(I); %确定灰度阈值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu 法阈值分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
15.膨胀操作
I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀
subplot(1,2,2);
imshow(I2);
title(' 膨胀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
16.腐蚀操作
MATLAB 实现腐蚀操作
I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀
subplot(1,2,2);
imshow(I2);
title('腐蚀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
17.开启和闭合操作
用 MATLAB实现开启和闭合操作
I=imread('xian.bmp'); %载入图像
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
se=strel('disk',1); %采用半径为1的圆作为结构元素
I2=imopen(I1,se); %开启操作
I3=imclose(I1,se); %闭合操作
subplot(2,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
subplot(2,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
18.开启和闭合组合操作
I=imread('xian.bmp');%载入图像
subplot(3,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I1=rgb2gray(I);
subplot(3,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on;%显示坐标系
se=strel('disk',1);
I2=imopen(I1,se);%开启操作
I3=imclose(I1,se);%闭合操作
subplot(3,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on;%显示坐标系
subplot(3,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on;%显示坐标系
se=strel('disk',1);
I4=imopen(I1,se);
I5=imclose(I4,se);
subplot(3,2,5),imshow(I5);%开—闭运算图像
title('开—闭运算图像');
axis([50,250,50,200]);
axis on;%显示坐标系
I6=imclose(I1,se);
I7=imopen(I6,se);
subplot(3,2,6),imshow(I7);%闭—开运算图像
title('闭—开运算图像');
axis([50,250,50,200]);
axis on;%显示坐标系
19.形态学边界提取
利用 MATLAB实现如下:
I=imread('xian.bmp');%载入图像
subplot(1,3,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
I1=im2bw(I);
subplot(1,3,2),imshow(I1);
title('二值化图像');
axis([50,250,50,200]);
grid on;%显示网格线
axis on;%显示坐标系
I2=bwperim(I1); %获取区域的周长
subplot(1,3,3),imshow(I2);
title('边界周长的二值图像');
axis([50,250,50,200]);
grid on;
axis on;
20.形态学骨架提取
利用MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
axis on;
I2=bwmorph(I1,'skel',1);
subplot(2,2,3),imshow(I2);
title('1次骨架提取');
axis([50,250,50,200]);
axis on;
I3=bwmorph(I1,'skel',2);
subplot(2,2,4),imshow(I3);
title('2次骨架提取');
axis([50,250,50,200]);
axis on;
21.直接提取四个顶点坐标
I = imread('xian.bmp');
I = I(:,:,1);
BW=im2bw(I);
figure
imshow(~BW)
[x,y]=getpts
平滑滤波
h=fspecial('average',9);
I_gray=imfilter(I_gray,h,'replicate');%平滑滤波

5. matlab中图像旋转

旋转步骤:

一 matlab函数:B = imrotate(A,angle,method);A是原始图像,angle是旋转角度,B为旋转后的图像;

二 使用method参数可以改变插值算法。 B = imrotate(A,angle,method,bbox)bbox参数用于指定输出图像属性:'crop': 通过对旋转后的图像B进行裁剪, 保持旋转后输出图像B的尺寸和输入图像A的尺寸一样。{'loose'}: 使输出图像足够大, 以保证源图像旋转后超出图像尺寸范围的像素值没有丢失。 一般上这种格式产生的图像的尺寸都要大于源图像的尺寸。

6. 遗传算法实现数字水印用MATLAB,程序怎么写啊可以把我的积分都给了你

一、嵌入水印信息的MATLAB程序
首先读入原始图象并设置参数,然后嵌入水印信息,程序代码如下:
clear
%
%读入原图象
trueImage=imread('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
alfa=.1;
LENGTH=2500;
subplot(2,2,1);
imshow(trueImage);
title('原始图象');
%
%对原图象进行DCT变换
dctF1=dct2('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
subplot(2,2,2);
imshow(log(abs(dctF1)),[ ]);
title('DCT cofficient matrix');
[m,n]=size(dctF1);
%
%产生水印序列并对其排序
radon('right',10);
watermark1=radon(LENGTH,1);
subplot(2,2,3);
title('watermark seqence')
[Y0,I0]=sort(watermark1);
%
%找出水印嵌入位置(幅值较大的n个频域成分)
A=dctF1(:);
[Y1,I1]=sort(A);
x=m*n;
k=LENGTH;
M=zeros(x,1);
%
%修改幅值较大的n个频域成分的幅值,嵌入水印(因为两个问题不同,所以有两个注释符)
for i=1:x
if k>=1
M(x)=Y1(x)*(1+alfa*Y0(k));
k=k-1;
else
M(x)=Y1(x);
end
x=x-1;
end
N=zeros(x,1);
x=m*n;
for i=1:x
N(I1(i))=M(i);
end
a=1;
for j=1:n
for i=1:m
dctF2(i,j)=N(a);
a=a+1;
end
end
%
%DCT反变换,得到嵌入水印的图象
idctF1=idct2(dctF2);
subplot(2,2,4);
imshow(idctF1,[ ]);
title('嵌入水印后的图象');
end

二、提取恢复水印信息的MATLAB程序
水印提取过程是水印嵌入过程的逆过程,相对嵌入过程来说比较复杂,难度较大,下面是水印提取检测的MATLAB程序代码:
function watermark_detect(image,Y1,I0,waterMark1)
%image:嵌入水印的图象
%Y1:原始图象的序列排序
%I0:原始水印的序列排序
%waterMark1:原始水印序列
%
%对嵌入水印图象进行DCT变化
dctW1=dct2(image);
%
%找出幅值较大的系数
B=dtW1(:);
[Y1,I2]=sort(B);
[m1,n1]=size(dctW1);
y=m1*n1;
k=length(waterMark1);
N0=zeros(k,1);
%
%提取水印序列
while k>=1
N0(k)=(Y2(y)-Y1(y))/alfa/Y1(y);
k=k-1;
y=y-1;
end
k=length(waterMark1);
waterMark2=zeros(k,1);
for i=1:k
waterMark2(I0(i))=N0(i);
end
%
%选取50个测试序列,其中第10个为提取出的水印
figure;
for i=1;50
if i==10;
waterMark=waterMark2;
else
waterMark=rand(k,1);
end
%计算各个序列与原来水印序列的相关值
c=waterMark'*waterMark1/sqrt(waterMark'*waterMark);
stem(i,c);
hold on;
end
%

三、接下来对嵌入水印的图象进行不同的攻击,用以测试水印的鲁棒性。
程序的目的和程序代码如下:
%
%攻击实验
disp('input you choice according to the following
image processing operation:');
disp('0--exit');
disp('1--smoothing patterns');
%添加噪音
disp('2--adding uniorm noise 添加噪音');
%滤波
disp('3--adding filter [10 10] 滤波');
%剪切
disp('4--cutting part of the image 剪切');
%压缩
disp('5--10 quality JPEG compressing 压缩');
%旋转45度
disp('6--rotate 45 旋转');
%
d=input('please input you choice(请输入您的选择):');
while d~=0
switch d
case 1
watermark_detect(idctF1,Y1,I0,waterMark1);
case 2
WImage2=idctF1;
noise0=10*rand(size(WImage2));
WImage2=WImage2+noise0;
figure;
imshow(WImage2,[ ]);
title('adding uniform noise 添加噪音');
watemark_detect(WImage2,Y1,I0,waterMark1);
case 3
WImage3=idctF1;
H=fspcial('gaussian高斯',[10,10],5);
WImage3=imfilter(WImage3,H);
figure;
imshow(WImage3,[ ]);
title(through filter [10,10] 滤波');
watemark_detect(WImage3,Y1,I0,waterMark1);
case 4
WImage4=idctF1; WImage4(1:128,1;128)=256;
figure;
imshow(WImage4);
title('cutting part of the image 剪切');
watemark_detect(WImage4,Y1,I0,waterMark1);
case 5
WImage5=idctF1;
WImage5=im2double(WImage5);
cnum=10;
dctm=dctmtx(8);
p1=dctm;
p2=dctm.';
imageDCT=blkproc(WImage5,[8,8],'p1*p2*x',dctm,dctm.');
DCTvar=im2col(imageDCT,[8,8],'distinct').';
n=size(DCTvar,1);
DCTvar=(sum(DCTvar.*DCTvar)-(sum(DCTvar)/n).^2)/n;
[m,order]=sort(DCTvar);
cnum=64-cnum;
mask=ones(8,8);
mask(order(1:cnum))=zeros(1,cnum);
im88=zeros(9,9);
im88(1:8,1:8)=mask;
im128128=kron(im88(1:8,1:8),ones(16));
dctm=dctmtx(8);
p1=dctm.';
p2=mask(1;8,1:8);
p3=dctm;
Wimage5=bikproc(imageDCT,[8,8],'p1*(x.8p2)*p3',dctm.',mask(1:8,1:8),dctm);
figure;
imshow(Wimage5);
title('JPEG Image 压缩');
watemark_detect(WImage5,Y1,I0,waterMark1);
case 6 WImage6=idctF1;
WImage6=imrotate(WImage6,45,'bilinear','corp');
figure;
imshow(Wimage6);
title('rotate 45 旋转');
watemark_detect(WImage6,Y1,I0,waterMark1);
case 0
break;
otherwise
error('you have a valid value(您的输入错误)');
end
d=input('please input you choice(请输入您的选择):');
end
%结束

阅读全文

与matlabimrotate源码相关的资料

热点内容
程序员送女友的相册 浏览:251
压缩文件怎么设置打开加密 浏览:764
tracert命令结果详解 浏览:356
唯赛思通用什么APP 浏览:371
古玩哪个app好卖 浏览:146
u盘内容全部显示为压缩包 浏览:517
编译固件时使用00优化 浏览:356
速借白条app怎么样 浏览:756
用纸张做的解压东西教程 浏览:12
求圆的周长最快算法 浏览:190
安卓热点怎么减少流量 浏览:270
北京代交社保用什么app 浏览:855
第一眼解压视频 浏览:726
文件夹err是什么 浏览:97
qt4编程pdf 浏览:572
局域网服务器下如何连续看照片 浏览:254
经过加密的数字摘要 浏览:646
加密锁9000变打印机 浏览:694
程序员的职业发展前途 浏览:639
安卓是世界上多少个程序员开发 浏览:45