❶ 0/1背包问题能不能使用贪心法解决
贪心算法解决背包问题有几种策略:
(i)一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 105。当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。而最优解为[ 0 , 1 , 1 ],其总价值为3 0。
(ii)另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n= 2 ,w=[10,20], p=[5,100], c= 2 5。当利用重量贪婪策略时,获得的解为x =[1,0], 比最优解[ 0 , 1 ]要差。
(iii)还有一种贪婪准则,就是我们教材上提到的,认为,每一项计算yi=vi/si,即该项值和大小的比,再按比值的降序来排序,从第一项开始装背包,然后是第二项,依次类推,尽可能的多放,直到装满背包。
有的参考资料也称为价值密度pi/wi贪婪算法。这种策略也不能保证得到最优解。利用此策略试解n= 3 ,w=[20,15,15], p=[40,25,25], c=30 时的最优解。虽然按pi /wi 非递(增)减的次序装入物品不能保证得到最优解,但它是一个直觉上近似的解。
而且这是解决普通背包问题的最优解,因为在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。
❷ 证明题:用解背包问题的贪心算法解0-1背包问题时不一定得到最优解 急求!!
贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。
背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。
用贪心算法求解背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi;然
后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c,则选择单位重量价值次高的物
品并尽可能多地装入背包。依此策略一直进行下去,直到背包装满为止。
在最后一步包装不下时可能会分割物品,而0-1背包问题不能分割物品,故不一定得到最优解。
取一反例即可说明
❸ 请教我用python的贪心法做0/1背包问题
动态规划,可以给你说下思路。
我们用一个二维的矩阵A来存储中间结果,A[i][j]代表前i个物体装入容量为j的背包时可以得到的最优解,相当于是原问题的一个子问题,然后我们就可以写出递推式来更新这个矩阵,具体可以参考下详细的讲解,网上的博客非常多不用我再写一遍。
比如这种:http://zh.wikipedia.org/zh-cn/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98
先自己读一遍吧,有问题可以再问。
❹ 用贪心算法解决背包问题
用贪心算法解决背包问题,首先要明白,结果不一定是全局最优的。对于贪心法而言,首先步骤是找到最优度量标准,我这里的算法采用的最优度量标准是: 收益p/重量w 的值最大者优先放入背包中,所以有算法如下:void GreedyKnapsack(float * x){ //前置条件:w[i]已按p[i]/w[i]的非增次序排列 float u=m; //u为背包剩余载重量,初始时为m for(int i=0;i<n;i++) x[i]=0; //对解向量x初始化 for(i=0;i<n;i++){ //按最优度量标准选择的分量 if(w[i]>u) break; x[i]=1.0; u=u-w[i]; } if(i<n) x[i]=u/w[i];}
❺ 01背包问题
能不能用性价比来做呢
动态规划看不懂啊
----------------------------------------------------------------------
如果不是0-1问题的话,当然可以通过比较性价比来做,这时候可考虑用贪心算法;但如果是0-1问题的话就不能单纯“用性价比来做”了,因为有可能背包空出一大块。举个简单的例子:一个背包的容量是10KG,
物品A重7KG,价值为14元,
物品B重6KG,价值为11元,
物品C中4KG,价值为7元,
从性价比来看,A最高,但是将A放到背包里以后,无法放进其他物品了,此时总价值为14元;显然,本问题的最佳方案为将B、C放入背包,总价值为18元。
这就是0-1背包问题为什么能用动态规划算法,而不能用贪心算法的原因。共同学习:-D
❻ 贪心算法解决特殊0-1背包问题
void 0_1_Knapsack(float w[], int n, float c,int x[]) //w[]为每个物品的重量,c为背包容量
{
int i;
for(i=1;i<=n;i++) x[i]=0;
for(i=1;i<=n;i++)
{
if(w[i]>c) break;
x[i]=1;
c-=w[i];
}
}
❼ C语言贪心算法 背包问题
if(k!=i)
t=T[i];
T[i]=T[k];
T[k]=t;
交换操作的三步要用{}括起来,不然只有t=T[i];是if的执行语句