‘壹’ java数据结构书籍推荐
1. 入门级
针对刚入门的同学,建议不要急着去看那些经典书,像《算法导论》、《算法》这些比较经典、权威的书。虽然书很好,但看起来很费劲,如果看不完,效果会很不好。所以建议先看两本入门级的趣味书:
《大话数据结构》
《算法图解》
大话数据结构
将理论讲的很有趣,不枯燥。作者结合生活中的例子去对每个数据结构和算法进行讲解,让人通俗易懂。
算法图解
这是一本像小说一样有趣的算法入门书,书中有大量的图解,通俗易懂。
看完上面一本或两本入门级的书,你就会对数据结构和算法有个大概认识和学习。但这些入门级的书缺少细节、不够系统。所以想要深入的学习数据结构和算法,光看这两本书肯定是不够的。
2. 不同语言的教科书
国内外很多大学都是将《数据结构和算法分析》作为教科书。这本书非常系统、严谨、全面,难度适中,很适合对数据结构和算法有些了解,并且已经掌握了至少一门语言的同学学习。针对不同的语言,分别有:
《数据结构与算法分析:C语言描述》
《数据结构与算法分析:C++描述》
《数据结构与算法分析:java语言描述》
如果你不会C、C++、java,会python或者JavaScript,可以看:
《数据结构与算法JavaScript描述》
《数据结构与算法:Python语言描述》
3. 面试书籍
现在很多大厂的面试都会考算法题,这里推荐几本面试算法书籍:
《剑指offer》
《编程珠玑》
《编程之美》
剑指offer
为面试算法量身定做的一本书。几乎包含了所有常见的、经典的面试题,如果能搞懂书里面的内容,一般公司的算法面试都应该没问题。
编程珠玑
这本书豆瓣评分有9分,评分很高。这本书最大的特色是讲了很多海量数据的处理技巧。其他算法书籍很少涉及海量数据。
编程之美
有些作者是微软工程师,算法题目较难,比较适合要面试Google、Facebook这样的公司的人去看。
4. 经典书籍
现在数据结构与算法最经典的书籍就是:
《算法导论》
《算法》
《计算机程序设计艺术》
这三本书非常经典,但都很厚,看起来比较费劲,估计很少有人能全部看完。但如果想更深入地学一遍数据结构和算法,还是建议去看看。
算法导论
章节安排不是循序渐进,里面有各种算法正确性、复杂度的证明、推导,对数学功底有一定要求,看起来有些费劲。
算法
偏重讲算法。内容不够全面,对数据结构方面的知识讲的不多,动态规划这么重要的知识点却没有讲。
计算机程序设计艺术
这本书包括很多卷,相比于其他书籍有更好的深度、广度、系统性和全面性。但如果你对数据结构和算法不是特别感兴趣,没有很好的数学、算法、计算机基础,很难把这本书读完、读懂。
5. 课外阅读
有些算法书籍也比较适合在平时悠闲的时候翻翻看看:
《算法帝国》
《数学之美》
《算法之美》
这些书都列举了大量的列子来解释说明,非常通俗易懂。
‘贰’ 常见算法5、广度优先搜索 Breadth-First Search
1、定义
广度优先搜索 (Breadth-First Search)是最简便的图的搜索算法之一,又称 宽度优先搜索 ,这一算法也是很多重要的图算法的原型。广度优先搜索属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
2、应用
广度优先搜索被用于解决 最短路径问题(shortest-path problem) 。
广度优先搜索让你能够找出两样东西之间的最短距离,不过最短距离的含义有很多!使用广度优先搜索可以:
3、图简介
既然广度优先搜索是作用于图的一种算法,这里对图作一个简单的介绍,先不深入了解。
图由 节点 和 边 组成。一个节点可能与多个节点相连,这些节点被称为邻居。
广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即
广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形。
例:假如你需要在你的人际关系网中寻找是否有职业为医生的人,图如下:
而使用广度优先搜索工作原理大概如下 :
1、Python 3 :
2、php :
1、《算法图解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue类: https://www.php.net/manual/zh/class.splqueue.php
‘叁’ 关于java学习,有什么书籍或者教程推荐不啦
你好,如果想学习java,推荐自学。如果觉得自己没有自制力,可以去报个培育班,那里有人教,会更好点。至于书的话,有很多的,比如说java编程思想等等,要结合自己的实际需要来选择,然后就是努力了。祝你学有所成!
‘肆’ 如何理解《算法图解》中的快速排序算法
快速排序的基本思想就是从一个数组中任意挑选一个元素(通常来说会选择最左边的元素)作为中轴元素,将剩下的元素以中轴元素作为比较的标准,将小于等于中轴元素的放到中轴元素的左边,将大于中轴元素的放到中轴元素的右边。
然后以当前中轴元素的位置为界,将左半部分子数组和右半部分子数组看成两个新的数组,重复上述操作,直到子数组的元素个数小于等于1(因为一个元素的数组必定是有序的)。
以下的代码中会常常使用交换数组中两个元素值的Swap方法,其代码如下
publicstaticvoidSwap(int[] A, inti, intj){
inttmp;
tmp = A[i];
A[i] = A[j];
A[j] = tmp;
(4)算法图解袁国忠扩展阅读:
快速排序算法 的基本思想是:将所要进行排序的数分为左右两个部分,其中一部分的所有数据都比另外一 部分的数据小,然后将所分得的两部分数据进行同样的划分,重复执行以上的划分操作,直 到所有要进行排序的数据变为有序为止。
定义两个变量low和high,将low、high分别设置为要进行排序的序列的起始元素和最后一个元素的下标。第一次,low和high的取值分别为0和n-1,接下来的每次取值由划分得到的序列起始元素和最后一个元素的下标来决定。
定义一个变量key,接下来以key的取值为基准将数组A划分为左右两个部分,通 常,key值为要进行排序序列的第一个元素值。第一次的取值为A[0],以后毎次取值由要划 分序列的起始元素决定。
从high所指向的数组元素开始向左扫描,扫描的同时将下标为high的数组元素依次与划分基准值key进行比较操作,直到high不大于low或找到第一个小于基准值key的数组元素,然后将该值赋值给low所指向的数组元素,同时将low右移一个位置。
如果low依然小于high,那么由low所指向的数组元素开始向右扫描,扫描的同时将下标为low的数组元素值依次与划分的基准值key进行比较操作,直到low不小于high或找到第一个大于基准值key的数组元素,然后将该值赋给high所指向的数组元素,同时将high左移一个位置。
重复步骤(3) (4),直到low的植不小于high为止,这时成功划分后得到的左右两部分分别为A[low……pos-1]和A[pos+1……high],其中,pos下标所对应的数组元素的值就是进行划分的基准值key,所以在划分结束时还要将下标为pos的数组元素赋值 为 key。
‘伍’ 三乘四八加九打三个数
<strong>三乘四八加九打三个数是692</strong>
游戏规则:1、通常由两个人玩,一方出数字,一方猜;
2、出数字的人要想好一个没有重复数字的4个数,不能让猜的人知道;
3、猜的人就可以开始猜;
4、每猜一个数字,出数者就要根据这个数字给出几A几B,其中A前面的数字表示位置正确的数的个数,而B前的数字表示数字正确而位置不对的数的个数。1,小了。那就是 2,2 也小。那就是 3??就这样一个一个猜测数字花费了很长时间。如果他定的数字是 99,那我要猜 99 次才能猜到!小伙伴表示很无奈,后来也不想再和我玩了。长大之后的一次偶然的机会,我看到了一本书叫《算法图解》。这本书上竟然提到了小时候我玩的“猜数字”游戏,我才了解到,这个游戏不是最终猜到这个数字就算赢,而是又快又准确地猜到数字,那才是高手!那如何快速准确地猜到数字呢?书中告诉了我们“猜数字”游戏快速胜出的小窍门,让我大呼神奇,茅塞顿开。首先从 50 开始猜。小了,但我们可以排除一半的数字!1~50 都小了。接下来,猜 75。大了,那余下的数字又排除了一半!75~100 都可以排除。接下来,猜 63(50 和 75 中间的数字)。大了,但又可以排除一半数字!可以从 51~62 中选了!接下来,猜 57(50 和 63 中间的数字)。对了!书中说到,这种猜测方式其实就是算法的二分查找。没想到小小的游戏也用到了算法。使用这种方法每次都能排除一半的数字。不管定数字的人心里想的是哪个数字,在 7 次之内都能猜到。而我小时候一个一个数字排除的那种方法其实也是一种方法,叫简单查找,只不过这种方法比较笨。相比于简单查找,二分查找大大节省了时间提高了效率。那么使用二分查找可节省多少时间呢?简单查找逐个地猜测数字,上面 100 个数字,最多需要猜 100 次。如果从 40 亿个数字中猜呢?最多需要猜 40 亿次。最多需要猜测的次数与列表长度相同,这被称为线性时间(linear time)。
‘陆’ 推荐一些关于算法的书籍
1、数据结构与算法分析:C语言描述(适合入门)
这本书相对于算法导论要简单一些,更适合入门。算法导论其实有比较强的理论性,看起来比较吃力。
《数据结构与算法分析:C语言描述》内容简介:书中详细介绍了当前流行的论题和新的变化,讨论了算法设计技巧,并在研究算法的性能、效率以及对运行时间分析的基础上考查了一些高级数据结构,从历史的角度和近年的进展对数据结构的活跃领域进行了简要的概括。由于《数据结构与算法分析:C语言描述(原书第2版)》选材新颖,方法实用,题例丰富,取舍得当。《数据结构与算法分析:C语言描述》的目的是培养学生良好的程序设计技巧和熟练的算法分析能力,使得他们能够开发出高效率的程序。从服务于实践又锻炼学生实际能力出发,书中提供了大部算法的C程序和伪码例程。
2、算法设计与分析基础(适合入门)
作者基于丰富的教学经验,开发了一套对算法进行分类的新方法。这套方法站在通用问题求解策略的高度,能对现有的大多数算法都能进行准确分类,从而使本书的读者能够沿着一条清晰的、一致的、连贯的思路来探索算法设计与分析这一迷人领域。本书作为第2版,相对第1版增加了新的习题,还增加了“迭代改进”一章,使得原来的分类方法更加完善。
3.0、算法引论:一种创造性方法(适合入门)
和普通的算法书不同,这本书从创造性的角度出发——如果说算法导论讲的是有哪些算法,那么算法引论讲的就是如何创造算法。结合前面的算法设计与分析基础,这本书把能解决的算法问题数量扩大了一个数量级。
3.1 算法竞赛 | 信息学奥赛一本通(算竞入门)
AlphaWA同学推荐的入门书籍,网上没有PDF版本,自己去淘宝买喽。
3.2 算法竞赛 | 算法竞赛进阶指南(算竞进阶)
‘柒’ 大O表示法
表示时间的大O符号,是用来描述算法效率的语言和度量单位。
大O表示法分析了算法的运行时间如何随列表的增长而增长,指出了算法最糟情况下的运行时间。
n为列表的长度,(n)作为大O表示法的操作数。
大O表示法通常不考虑常量,因为如果这两种算法的大O运行时间不同,这个常量将无关要紧。
大O表示法不考虑乘以、除以、加上或减去的数字。如O(n+26)、O(n-26)、O(n*26)、O(n/26),它们都应该表示为O(n)。
如下图:
其中Ο(log2n )、Ο(n)、 Ο(nlog2n )、Ο(n2)和Ο(n3)称为多项式时间,而Ο( 2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为P(Polynomial,多项式)类问题,而把后者(即指数时间复杂度的算法)称为NP(Non-Deterministic Polynomial,非确定多项式)问题。
1、《算法图解》 https://www.manning.com/books/grokking-algorithms
2、《算法的基本概念》 https://www.zybuluo.com/defias/note/286416
‘捌’ 马前课12指算法图解
马前课12指算法图解如下:
动左手拇指,依次顺时针点击其余3指上所布大安、留连、速喜、赤口、小吉、空亡6神位。例五月初四,午时占。
小六壬天气秘法:
大安阴晴日,清风送爽杨柳枝。
留连雨绵绵,旱苗喜雨在禾田。
速喜霓虹现,艳阳高照在人间。
赤口冷如刀,雷雨霜雪兼冰雹。
小吉星月稀,阴阳天里阴阳期。
空亡雾茫茫,不见日月海天长。
‘玖’ 《算法图解》epub下载在线阅读,求百度网盘云资源
《算法图解》([美] Aditya Bhargava)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1_7FP_ZH1Z3NHc6AqJwVRGw
书名:算法图解
作者:[美] Aditya Bhargava
译者:袁国忠
豆瓣评分:8.5
出版社:人民邮电出版社
出版年份:2017-3
页数:196
内容简介:
本书示例丰富,图文并茂,以让人容易理解的方式阐释了算法,旨在帮助程序员在日常项目中更好地发挥算法的能量。书中的前三章将帮助你打下基础,带你学习二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如,何时采用贪婪算法或动态规划;散列表的应用;图算法;K最近邻算法。
作者简介:
Aditya Bhargava
软件工程师,兼具计算机科学和美术方面的教育背景,在adit.io撰写编程方面的博客。
‘拾’ 算法不扎实的程序员,每一个都很慌
初学者经常问这样的问题,然而这些其实是错误的问题。
对于初学者而言,你最应该优先考虑的是,哪些东西构成了程序的基础?
最经典的一句话: 程序 = 数据结构 + 算法 。
如果说编程语言是程序的血肉,那么算法就是程序的灵魂。
人不能没有血肉之躯,但是没有灵魂的人依然只是一个死人。
不能单纯依靠算法衡量一个程序员的好坏,但是面试的时候考算法绝对是简单高效的筛选手段。近些年大厂的面试几乎必考算法也是这个原因。每一个算法学的不扎实的程序员,在面试的时候都很慌。
下面这些书籍应该是算法方面最常见的经典书籍。我有幸都读过,有些读完了,有些半途而废,不过基本上也都算是熟悉。顺序上由易到难,从薄到厚,每本书下面我会简单的介绍一番,希望能对你的学习有所帮助。
首先是两本算法入门书籍,也可以当做算法读物:
《啊哈!算法》
用他的自我介绍的来讲:“这不过是一本有趣的算法书而已,和别的算法书比较,如果硬要说它有什么特点的话,那就是你能看懂它。”
图文并茂,而且画风有趣,适合新手入门,但是代码是C的,看着比较累,文字也略显冗长。
图是非常棒的,启蒙用,非教科书
《算法图解》
和《啊哈》类似,他的介绍是:“像小说一样有趣的算法入门书。”
书里面讲的很好,Python代码也很容易读懂,比之《啊哈!算法》,书中的例子没有那么有趣,但是图很清晰,文字和代码不冗杂。
缺点同样是非教科书,非常浅显,三四个小时就看完了。有一种刚刚热身的感觉。
接下来这几本都是最常见的书了:
《数据结构与算法分析C语言描述》
这本书的作者几乎不浪费笔墨在一些简单的地方。书很薄,但是覆盖面很广很深,作者实在是非常厉害。
不过反过来说,就是有些地方讲的语焉不详……
这本书还有Java语言版本的,但是相比之下C的更好一些。
挺好的一本书。
还有一点是翻译不是很给力,好多人都没坚持看完。
《数据结构与算法Python语言实现》
英文版评分非常高,中文版评分非常低……
据说是也翻译的不好。另外就是本书自身错误也不少……几版过后依然很多没有改过来。
书中数学证明和介绍比较简单。因为采用Python语言的原因,比较易读。
浅显易懂,内容上循序渐进,环环相扣。相比于上一本,我会更推荐一些。厚度也不算厚。
《数据结构与算法 Python语言描述》
北大教授裘宗燕的书,这本书前面写的挺好的,尤其是在面向对象还有ADT等思想的阐述,都很不错。
但是读到后来给我一种虎头蛇尾的感觉,前面气势如虹绪论就写了很长,最后三章感觉有点草草收尾的意思。就像编辑在催稿,而作者很忙的样子……
另外就是这本书的编排顺序我个人也不是特别喜欢。
接下来是两本大部头,都是非常厚的书。
他们最大的特点就是:出现率远大于看完率
《算法导论》
算法书中的权威,MIT的6.046J就是按照这个来讲的。
公认最好的算法书,组织结构合理,内容详尽。引导读者从思维方式上对算法进行领悟。
书中对算法的数学结构进行了详尽的阐述。有非常多的数学证明。
这本书我说不出什么缺点,只能说有些内容是因为我还没到大牛的境界,暂时还无法体会理解。
我个人的观点是:不要纠结于详细的伪代码,不用纠结于连篇累牍的讲解。体会其中算法的精髓就好。
《算法》第四版
如果说,《算法导论》是学术上最好书,那这本应该是实际应用最好的书。
它对数学的要求比《算法导论》低很多,摒弃了算法的证明。
书中具体给出了每位程序员应知应会的50个算法,深入浅出,大量图解。非常棒。
java基础的话你能撸出来Hello World基本上就可以开始看这本书了,这本书最大的不友好之处在于它的第一章非常长,没看过的人又不知道哪里可以跳过。
这本书后面的翻译感觉不如前边了,不知道是换人了还是DDL了……
翻开书就会看到很多的图,配套作者在coursera上面的课程学的话事半功倍!
接下来的几本我看的比较少,简单介绍一下,希望大家自己去发现和了解,不要漏下这些好书:
《编程珠玑》
很薄一本啊,但是我放在那还没看完……
这本书被称为: 历史 上最伟大的计算机科学着作之一
融深邃思想、实战技术与趣味轶事于一炉的奇书。
内容不深,但是不是一个知识点一个知识点的给你讲解算法原理的。
这本书的核心思想是让你了解如何正确选择和高效地实现算法。书中还有一些趣闻轶事,看着倒是很有意思~
有兴趣的同学可以看看~
《算法竞赛入门经典》系列
算法竞赛入门经典书,ACM必备书籍吧算是。书中题目对于竞赛来说比较简单,但是对于一般我们平时工程来说偏难。语言用的是C/C++,请好好做例题好好做作业,读书的时候好好思考和复习~
反正我是没读过,捂脸……
《剑指Offer》
这个书很有意思,对于在校生来说我个人觉得是必看的书。没有任何工作经验的同学在面试的时候真的会被问懵的。这本书可以让你了解如何应付考官日常问题,在解答面试问题的时候,书中很多方法和思路会让考官觉得你思考的很全面,给你加不少分。
我面试的时候也曾快速扫过一遍这本书,让我在回答问题的时候条理更清晰。书中代码是C的,emmm,于是代码部分我就没太看……
《用Python解决数据结构与算法问题》
最后给大家推荐一本在线的 免费 的算法书。
https://facert.gitbooks.io/python-data-structure-cn/
不是大部头,也不是读物,新手入门足够用,书中介绍了大多数日常需要的算法,并且讲的比较浅显~转行的新手基本可以通过这本书来快速掌握常用基本算法了~
反正免费,是否适合自己看两页也就get了~
如果需要PDF版,可以在“程序员必修课”公众号后台回复:“Python算法书”获取。