1. 什么是质数
质数(又称为素数)
1.就是在所有比1大的整数中,除了1和它本身以外,不再有别的因数,这种整数叫做质数。还可以说成质数只有1和它本身两个约数。2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任 何其它两个整数的乘积。例如,15=3*5,所以15不是素数;
又如,12 =6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以 外,不能表示为其它任何两个整数的乘积,所以13是一个素数。
[编辑本段]质数的概念
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)着名的高斯“唯一分解定理”说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。
[编辑本段]质数的奥秘
质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。
有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。
说起质数就少不了哥德巴赫猜想,和着名的“1+1”
哥德巴赫猜想 :(Goldbach Conjecture)
内容为“所有的不小于6的偶数,都可以表示为两个素数”
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个着名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。
1920年,挪威的布朗(Brun)证明了 “9+9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数。
1956年,中国的王元证明了 “3+4 ”。
1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”。
1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。
其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。实际上:
一陈景润证明的不是哥德巴赫猜想
陈景润与邵品宗合着的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P',P",或者P1,P2,P3,使得下列两式至少一式成立:“
N=P'+P" (A)
N=P1+P2*P3 (B)
当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。”
众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立,
两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。
二。 陈景润使用了错误的推理形式
陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。
三。 陈景润大量使用错误概念
陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。“殆素数”指很像素数,拿像与不像来论证,这是小孩的游戏。而“充分大”,陈指10的50万次方,这是不可检验的数。
四。陈景润的结论不能算定理
陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。
五。陈景润的工作严重违背认识规律
在没有找到素数普篇公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。(王晓明1999年《中华传奇》第三期“哥德巴赫猜想传奇)
[编辑本段]“质数”——Prime Number的几种英文解释
1.In mathematics, a prime number (or prime) is a natural number greater than one whose only positive divisors are one and itself. Or for short: A prime number is a natural number with exactly two natural divisors. A natural number that is greater than one and is not a prime is called a composite number. The numbers zero and one are neither prime nor composite. The property of being a prime is called primality. Prime numbers are of fundamental importance in number theory. [From Wikipedia]
2.A whole number not divisible without a remainder by any whole number other than itself and one.(汉译:素数,质数:只能被其本身和一整除而没有余数的整数)[From American Heritage Dictionary]
3.any integer other than 0 or ± 1 that is not divisible without remainder by any other integers except ± 1 and ± the integer itself. [From The Merriam-Webster's Collegiate® Dictionary]
4.a number that can be divided only by itself and the number one. For example, three and seven are prime numbers.[From Longman Dictionary of Contemporary English]
[编辑本段]质数的性质
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数。
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!
还有一种被称为“殆素数”的,意思是很像素数,着名数学家陈景润就使用了这个概念,他的“1+2”的“2”,就表示“殆素数”,实际上是一个合数。大家不要搞混了。严格地讲,“殆素数”不是一个科学概念,因为科学概念的特征是(1)精确性;(2)稳定性;(3)可以检验;(4)系统性;(5)专义性。例如,许多数学家使用了“充分大”,这也是一个模糊概念,因为陈景润把它定义为“10的50万次方”,即在10的后面加上50万个“0”。这是一个无法检验的数。
[编辑本段]质数的假设
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。
[编辑本段]质数表上的质数
现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。
300以内的质数表
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 [编辑本段]【求大质数的方法】
研究发现质数除2以外都是奇数,而奇数除了【奇数*奇数】(或再加“*奇数”)都是质数。那么用计算机先把【奇数*奇数】(或再加“*奇数”)(比如9,15,21,25,27,33,35,39……)都求出来,再找奇数中上面没提到的那些数,那些数就是素数。
人们找出的几个超大质数中有遗漏,那么就可以用此方法求出那些遗漏的数,不过需要很长时间!
这对于“孪生素数”有帮助喔!
上面这个算法比较垃圾,对于求很大的素数效率低下,这个很大的素数可以用概率算法求。
求素数,请用《公理与素数计算》。这种方法用不着将所有奇数都写出来,而且计算出来的素数可以做到一个不漏。对于合数的删除,也不是涉及所有奇合数,删除是准确无误的,删除奇合数后剩余的全部是素数。如:对奇素数3的倍数的数进行删除,在整个自然数中只须删除一个数;对素数5的倍数的数进行删除,在整个自然数中只须删除2个数;对素数7的倍数的数进行删除,在整个自然数中只须删除8个数;以此类推,如果哪位老师能够将它用电脑编成程序,对计算素数有很大的帮助。
[编辑本段]【质数的个数】
有近似公式: x 以内质数个数约等于 x / ln(x)
ln是自然对数的意思。
尚准确的质数公式未给出。
10 以内共 4 个质数。
100 以内共 25 个质数。
1000 以内共 168 个质数。
10000 以内共 1229 个质数。
100000 以内共 9592 个质数。
1000000 以内共 78498 个质数。
10000000 以内共 664579 个质数。
100000000 以内共 5761455 个质数。
......
总数无限。
[编辑本段]【求质数的方法】
古老的筛法可快速求出100000000以内的所有素数。
筛法,是求不超过自然数N(N>1)的所有质数的一种方法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛子。
具体做法是:先把N个自然数按次序排列起来。1不是质数,也不是合数,要划去。第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。这样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛”,简称“筛法”。(另一种解释是当时的数写在纸草上,每要划去一个数,就把这个数挖去,寻求质数的工作完毕后,这许多小洞就像一个筛子。)
2. 1—1O000000000O0以内的质数表
1到10的12次方范围内的质数表可以建立,但是数量很大,不便于查询。
因此,一般都通过软件工具或程序代码进行判定。
写了一段fortran代码,可以快速判定18位以内的正整数的是否质数。
具体算法见绿色部分的注释。代码很简洁,效率仅次于埃氏筛法。8位大整数,判定过程不超过1秒。算法可以用来计算和制作质数表,只不过题主要求的表过于庞大,保存到硬盘上大约是一个30G的文件。
附:计算实例和fortran程序代码。
3. 生成有 100000 个质数的质数表的较快算法用c++和方法
#include<cstdio>
#include<cstring>
constintmaxm=1100000;
constintmaxn=10010;
intcnt;
intPrime[maxn];
boolno_prime[maxm];
intmain(){
freopen("prime.out","w",stdout);
for(inti=2;cnt<10000;i++){
if(!no_prime[i])
Prime[++cnt]=i;
for(intj=1;j<=cnt&&Prime[j]*i<maxm;j++){
no_prime[Prime[j]*i]=true;
if(i%Prime[j]==0)break;
}
}
for(inti=1;i<=cnt;i++)
printf("%d",Prime[i]);
return0;
}
这是线性筛质数法,时间复杂度是O(n) 其中n是数据范围
4. 生成素数表的算法有哪些
筛选法求素数表,最快的素数表生成算法。
所谓“筛选法”指的是“埃拉托色尼(Eratosthenes)筛法”。他是古希腊的着名数学家。他采取的方法是,在一张纸上写上1到100全部整数,然后逐个判断它们是否是素数,找出一个非素数,就把它挖掉,最后剩下的就是素数。
具体做法如下:
<1>
先将1挖掉(因为1不是素数)。
<2>
用2去除它后面的各个数,把能被2整除的数挖掉,即把2的倍数挖掉。
<3>
用3去除它后面的各数,把3的倍数挖掉。
<4>
分别用4、5…各数作为除数去除这些数以后的各数。这个过程一直进行到在除数后面的数已全被挖掉为止。例如找1~50的素数,要一直进行到除数为47为止(事实上,可以简化,如果需要找1~n范围内素数表,只需进行到除数为n^2(根号n),取其整数即可。例如对1~50,只需进行到将50^2作为除数即可。)
如上算法可表示为:
<1>
挖去1;
<2>
用刚才被挖去的数的下一个数p去除p后面各数,把p的倍数挖掉;
<3>
检查p是否小于n^2的整数部分(如果n=1000,
则检查p<31?),如果是,则返回(2)继续执行,否则就结束;
<4>
纸上剩下的数就是素数。
参考链接:http://blog.chinaunix.net/uid-9078996-id-2010292.html
5. 什么是素数呀,判断是不是素数的算法是什么呀
素数只能被自身或1整除。
6. 判断一个整数是不是素数的算法
建立一个素数表(一般不大于此整数的算术平方根即可)进行试除,或者利用一些常见素数性质,以及被素数整除的性质来判断
7. 谁由1000以内质数表
1000以内质数表如下:
质数表的 质数又称 素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个 正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为 合数。1和0既非素数也非合数。素数在 数论中有着很重要的地位。
质数表记忆口诀:
方法一:儿歌记忆法
(二、三、五、七 和 十一) (十三后面是十七) (十九、二三、二十九) (三一、三七、四十一) (四三、四七、五十三) (五九、六一、六十七) (七一、七三、七十九) (八三、八九、九十七)
方法二:口诀记忆法
二,三,五,七,一十一; 一三,一九,一十七; 二三,二九,三十七; 三一,四一,四十七; 四三,五三,五十九; 六一,七一,六十七; 七三,八三,八十九; 再加七九,九十七; 25个质数不能少; 百以内质数心中记。
二、质数的具体应用:
1、质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
2、在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
3、在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
4、以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
5、多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。