⑴ BP算法及其改进
传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。
用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。
这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。
本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。
矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。
本文最后指出了新算法的优点,并指出了有待改进的地方。
关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用
Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei
Abstract
The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.
It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:
1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.
Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.
By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.
Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.
Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application
传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。
用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。
这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。
本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。
矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。
本文最后指出了新算法的优点,并指出了有待改进的地方。
关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用
Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei
Abstract
The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.
It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:
1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.
Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.
By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.
Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.
Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application
BP算法及其改进
2.1 BP算法步骤
1°随机抽取初始权值ω0;
2°输入学习样本对(Xp,Yp),学习速率η,误差水平ε;
3°依次计算各层结点输出opi,opj,opk;
4°修正权值ωk+1=ωk+ηpk,其中pk=,ωk为第k次迭代权变量;
5°若误差E<ε停止,否则转3°。
2.2 最优步长ηk的确定
在上面的算法中,学习速率η实质上是一个沿负梯度方向的步长因子,在每一次迭代中如何确定一个最优步长ηk,使其误差值下降最快,则是典型的一维搜索问题,即E(ωk+ηkpk)=(ωk+ηpk)。令Φ(η)=E(ωk+ηpk),则Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk。若ηk为(η)的极小值点,则Φ′(ηk)=0,即E(ωk+ηpk)Tpk=-pTk+1pk=0。确定ηk的算法步骤如下
1°给定η0=0,h=0.01,ε0=0.00001;
2°计算Φ′(η0),若Φ′(η0)=0,则令ηk=η0,停止计算;
3°令h=2h, η1=η0+h;
4°计算Φ′(η1),若Φ′(η1)=0,则令ηk=η1,停止计算;
若Φ′(η1)>0,则令a=η0,b=η1;若Φ′(η1)<0,则令η0=η1,转3°;
5°计算Φ′(a),若Φ′(a)=0,则ηk=a,停止计算;
6°计算Φ′(b),若Φ′(b)=0,则ηk=b,停止计算;
7°计算Φ′(a+b/2),若Φ′(a+b/2)=0,则ηk=a+b/2,停止计算;
若Φ′(a+b/2)<0,则令a=a+b/2;若Φ′(a+b/2)>0,则令b=a+b/2
8°若|a-b|<ε0,则令,ηk=a+b/2,停止计算,否则转7°。
2.3 改进BP算法的特点分析
在上述改进的BP算法中,对学习速率η的选取不再由用户自己确定,而是在每次迭代过程中让计算机自动寻找最优步长ηk。而确定ηk的算法中,首先给定η0=0,由定义Φ(η)=E(ωk+ηpk)知,Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk,即Φ′(η0)=-pTkpk≤0。若Φ′(η0)=0,则表明此时下降方向pk为零向量,也即已达到局部极值点,否则必有Φ′(η0)<0,而对于一维函数Φ(η)的性质可知,Φ′(η0)<0则在η0=0的局部范围内函数为减函数。故在每一次迭代过程中给η0赋初值0是合理的。
改进后的BP算法与原BP算法相比有两处变化,即步骤2°中不需给定学习速率η的值;另外在每一次修正权值之前,即步骤4°前已计算出最优步长ηk。
⑵ 如何算改进了一个算法,怎么改才叫改进了呢
我认为,所谓“改进”就是使发现原算法的不足之处,并优化之,结果是使该算法效率大大提高高,或者适用度更广泛,如果“改进”后的算法不比之前的更优,就不能算改进。反之,只要能够大大提高改算法的效率,或者使该算法适用度更广,就算是改进。至于改进一个细节,如果是一个重要的细节,当然也算是改进。
不过,算法都是高手发明的,他们在公布之前一定将这种算法优化过了,如果要再改进,那一定要非常细心或者比他更高才行。
⑶ 如何改进算法,提高程序效率
从根本上了解算法是怎么执行的,这样可以做到一通百通。
一般来说,降低时间复杂度是比较好的方法。 有时候,占用更多的内存可以帮助程序更快的运行。还有就是选用效率高的语言,例如C。
⑷ bp神经网络的算法改进一共有多少种啊!麻烦举例一下!
1、引入动量项
2、变尺度法
3、变步长法
具体怎么做,网上都有相关资料,公式比较难打,只能写到这个份
⑸ AES加密算法怎样进行改进
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。
用AES加密2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种候选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AES。Rijndael是在1999年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES正日益成为加密各种形式的电子数据的实际标准。
美国标准与技术研究院(NIST)于2002年5月26日制定了新的高级加密标准(AES)规范。
算法原理 AES算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES使用几种不同的方法来执行排列和置换运算。AES是一个迭代的、对称密钥分组的密码,它可以使用128、192和256位密钥,并且用128位(16字节)分组加密和解密数据。与公共密钥加密使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。密码学简介据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。
随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家保准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度的不断提高,近期又出现了AES、ECC等。
使用密码学可以达到以下目的:保密性:防止用户的标识或数据被读取。数据完整性:防止数据被更改。身份验证:确保数据发自特定的一方。
⑹ 如何改进SVM算法,最好是自己的改进方法,别引用那些前人改进的算法
楼主对于这种问题的答案完全可以上SCI了,知道答案的人都在写论文中,所以我可以给几个改进方向给你提示一下:
1 SVM是分类器对于它的准确性还有过拟合性都有很成熟的改进,所以采用数学方法来改进感觉很难了,但是它的应用很广泛 SVMRank貌似就是netflix电影推荐系统的核心算法,你可以了解下
2 与其他算法的联合,boosting是一种集成算法,你可以考虑SVM作为一种弱学习器在其框架中提升学习的准确率
SVM的本身算法真有好的改进完全可以在最高等级杂志上发论文,我上面说的两个方面虽然很简单但如果你有实验数据证明,在国内发表核心期刊完全没问题,本人也在论文纠结中。。
⑺ 对算法的改进,改进多少才行才算合理
我也是这个建议。
1.在空间可以承受的情况下考虑改进时间效率。大的算法的话可以对其中的部分算法进行替换。
2.如果时间效率己达理论下限,可以进行空间效率的改进,包括实现的数据结构等等。
3.如果要求实现算法的话,针对代码的改进余量不小。仅仅从语言本身考虑就有很大的优化空间。例如关键算法用ASM宏实现,数据结构的组新组织(涉及CPU取数时的对齐问题),算法的函数组织等等。
对一个成熟算法的任何一方面进行改进都是了不起的工作。
⑻ 数据结构中快速排序算法的不足以及改进
一般快速排序算法都是以最左元素作为划分的基准值,这样当数据元素本身已经完全有序(不管正序或者逆序)时,每一趟划分只能将一个元素分割出来,其效率很低:时间复杂度O(n^2),空间复杂度为O(n)
所以改进方法就是找寻合适的基准值,保证不至于在关键字有序或者接近有序时发生这个情况,一般可以使用三者取中(就是待划分序列的头元素、尾元素、中间元素三者的中间值)、或者随机选择等方法,这样即使关键字完全有序,也可以保证时间复杂度O(nlogn),空间复杂度O(logn)
⑼ 优化算法是什么呢
优化算法是指对算法的有关性能进行优化,如时间复杂度、空间复杂度、正确性、健壮性。
大数据时代到来,算法要处理数据的数量级也越来越大以及处理问题的场景千变万化。为了增强算法的处理问题的能力,对算法进行优化是必不可少的。算法优化一般是对算法结构和收敛性进行优化。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
遗传算法
遗传算法也是受自然科学的启发。这类算法的运行过程是先随机生成一组解,称之为种群。在优化过程中的每一步,算法会计算整个种群的成本函数,从而得到一个有关题解的排序,在对题解排序之后,一个新的种群----称之为下一代就被创建出来了。首先,我们将当前种群中位于最顶端的题解加入其所在的新种群中,称之为精英选拔法。新种群中的余下部分是由修改最优解后形成的全新解组成。
常用的有两种修改题解的方法。其中一种称为变异,其做法是对一个既有解进行微小的、简单的、随机的改变;修改题解的另一种方法称为交叉或配对,这种方法是选取最优解种的两个解,然后将它们按某种方式进行组合。尔后,这一过程会一直重复进行,直到达到指定的迭代次数,或者连续经过数代后题解都没有改善时停止。
⑽ 冒泡算法的改进
冒泡排序过程
设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮"(交换位置),如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
性能分析
若记录序列的初始状态为"正序",则冒泡排序过程只需进行一趟排序,在排序过程中只需进行n-1次比较,且不移动记录;反之,若记录序列的初始状态为"逆序",则需进行n(n-1)/2次比较和记录移动。因此冒泡排序总的时间复杂度为O(n*n)。
冒泡排序实现
根据扫描方向不同,实现略有不同。
普通冒泡算法
一般的冒泡排序的第i趟处理是从r[0]到r[n-i],依次比较相邻两个记录的关键字,并在反序时交换相邻的记录,其结果是将这n-i+1个记录中关键字最大的元素交换到第n-i+1的位置上。整个排序过程需要进行n-1趟处理。
冒泡算法的改进:
改进1:增加1个标志位,记录是否发生交换
我们在传统的冒泡排序的基础上增加一个标志位exchange用来表示在一次冒泡排序中,数组的顺序是否发生改变,如果改变了,意味着数组可能还未排列好,所以要进行下一次冒泡排序,而如果exchange的值不为真,也就是说明该数组在本次冒泡排序中,数组的顺序没有发生改变,即数组已经有序,则排序结束。
改进2:记录发生交换的最后位置
我们在改进1的基础上将标志位记录的信息修改为一次冒泡排序中最后一次交换数据的位置,这样进行洗一次冒泡排序的时候,我们可以知道,在这个标志位记录的位置后面的数据均已有序,也就不用考虑了,这样就不用考虑改进1中exchange改变了之后,数组是否已经排好的情况了。
改进3:增加2个记录位,双向记录发生交换的最后位置
我们在改进2的基础上设想,很多数组是有一定的规律性的,如果我们考虑到很多数组自身存在的一些有序性的话,会使问题简化很多,所以我们考虑,不仅仅可以设置单项的记录位扫描,可以设置正反向双向扫描,这样需要增加2个记录位,分别记录上一次冒泡排序中正向和反向发生交换的最后位置,这样就类似于从两侧开始向中间排序,最小的,次小的……从左边开始排,最大的,次大的……从右边开始排,大大提高了效率。